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Abstract

The use of static terrain in modern computer games can détoma the realism, in that users
cannot interact with the terrain as they would other gaméiesit This report proposes a design
and implementation of a deformable terrain system that eanded in modern computer games.
The system provides two levels-of-detail for the terraiache of which can be independently de-
formed. The first, allows large-scale deformations thacifthe macro-geometry of the terrain - the
geometry that players walk on and collide with. The secorfdrdeable level-of-detail represents
fine-scale surface detail that affects the appearancerairieand allows for superficial detail such
as footprints and bullet-holes. The proposed deformatiaesir in real-time and can be predefined
or procedurally generated. The system makes use of stdleafrt techniques such as geometry
clipmaps, displacement mapping, render-to-texture arallpa mapping. Successful results are ac-

quired for the large-scale deformable system, but only-eigth machines may support the fine-scale
deformations.
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Introduction

The focus of modern computer games is on realism. Not only physicallydlbesdering, but the physics
itself as well as interactions with the virtual environment. The combination oétfaedors results in
greater immersion and presence within the environment. In order to satisy/gbals, computer games
must be consistent in the way they work and react with the player. If theeplagrforms an action,
he/she expects an appropriate reaction to occur. When such a ream®nat occur, the player notices
and may lose his/her degree of presence within the game environmeninJan@used in the majority
of modern computer games, and have been for quite some time. They amjenosiatic in all but a
few cases. A static terrain does not react to the actions of the playereardtiierefore detract from the
sense of realism built up by other environment factors. A player natsdomed to this shortcoming of
computer games, would expect feedback when shooting the grourddigxpa bomb or even walking
across snow. The vast benefits of the inclusion of a dynamic terraineseldar. Besides the feedback
a player would experience, dynamic terrain offers a sense of unpability where environments do not
remain the same. For example, players could dig trenches in which to lie ol wmerneath enemy
barriers. In multiplayer games, this could add an entirely new paradigm.

Although dynamic terrains and destructible environments are very uncontinegrgre not non-existent.
The games that do possess these features, however, make use of thimited manner. The terrain
deformations or destruction of objects is usually predefined. Predefefednations are repetitive and,
although better than none at all, can still detract from the realism. It is a lat smnmon for games
to display such detail in more superficial ways by the use of decals. Daealsiages with transparent
backgrounds that are laid over objects. A common example is the bullet-hodd wkich is placed
at locations where guns have fired as if the bullet actually pierced thengrouwall. Because they
are basic 2-dimensional images, they lack realism. In addition to their lackitigme decals usually
disappear after a specified amount of time. This is done to save procéisstngecause every extra
decal brings extra computation for the CPU and Graphics Card. Disapgekecals and dead-bodies
are another set of shortcomings within modern computer games.

This report introduces the design and implementation of a dynamic terraimsf@teise in computer
games. The system supports vertical deformation of the terrain on botdrsecnd fine scale. Coarse-
scale deformations affect the elevation of the terrain whilst the fine-sefdendations change surface
detail and appearance. The shape or form of these deformationsdsnizable and can even be deter-
mined on-the-fly if chosen. This allows for unpredictability and removes tbkel@m of repetitiveness.
Subsequent deformations do not add any extra computation and tleemafimfinite number of deforma-
tions can be performed throughout the application’s run-time without aidnogrformance. Because of
this, deformations need not decay or disappear. This system addstergrense of realism to computer
games. The only cost is that fine-scale deformations require a coridglaraount of memory.

Chapter 1 introduces concepts relevant to the understanding of gsapeblmiques used in modern
computer games and the terrain system proposed by this report. Chapmteer2 the design of the
terrain system and brings in some of the techniques mentioned in Chapterapte€B describes the
implementation of the deformable terrain system in more depth. Results and timiogdaoh tests are
listed and evaluated in Chapter 4. Chapter 5 concludes the report asidexsrareas of improvement.



Chapter 1

Background

1.1 The GPU

The Graphics Card or Video Card is a component of modern computersatetgpedicated to the
generation of images and text on the screen. In the same way the CPUsartomputer, the graphics
card is controlled by the Graphics Processing Unit (GPU). The primaindiforce for the development
of GPUs as coprocessors were computer games which required exessimg) processing power to
produce more realistic environments. Because GPUs need to perforna snlyset of the operations
that the CPUs do, their architecture took a different development roguétirg in the ability to perform
many floating-point operations quickly and at the same time. Their architecaumrde classified as
almost SIMD (Single Instruction, Multiple Data) according to Flynn’s TaxogqFly72] which means
that the same instruction is executed on different data simultaneously. dhigeature can be better
classified as SIMT (Single Instruction Multiple Threads) [NVIc], howeve that individual threads
may opt out of conditional operations and branching. The processingrof a GPU is largely related
to the number of parallel cores that it has. The fast scalar procabstorexecute individual threads are
commonly referred to as tlemresof a GPU. The state of the art NVIDIA chips contain 480 cores (scalar
processors) [NVIb]. Itis this large number of highly capable paratie¢s that allows the graphics card
to process visual data at such high rates to produce the visual eféertsrs games and simulations
today.

1.1.1 Fixed-Function Pipeline

Graphics Pipelineis a term used to refer to the multi-stage process applied to data in order for it to
be displayed on the computer screen. In computer games, the most commen gotput is that of

a character or virtualisation of some real-life object. An on-screen 30chhifee final product of the
graphics pipeline, is an amalgamation of a number of raw resources. Thessestial of these pipeline
inputs is mesh data. A mesh is the description of an object’s 3-dimension&. #egause it is difficult

to represent continuous data on a computer, meshes are usually dikbgrideiscrete set of polygons

or facets. These facets are referred to as primitives and are usuallgiésa(or quadrangles in other
cases). Each triangle that is used to approximate the object mesh is deswsiig three vertices. A
vertex is a positional point used to describe the corners or intersectisimapes and, in the case of a



triangle, the three corners. The vertex is defined using a 3-vector (witdnxl z coordinates) or 2-vector
(with x and y coordinates) depending on whether the environment is 3D oegoectively. A mesh is
thus defined by an ordered set of vertices specifying triangles.

In addition to shape data, an object can have other arbitrary

Y B B B B B attributes associated with each vertex. It is common to use
an image to provide a mesh with colour detail. These images

~ < (027,085) are known as textures and though most often 2-dimensional,
N Wal*" canalso be 1D or 3D. In order to map a texture onto the 3D

mesh, each vertex must have a set of texture-coordinates as-
sociated with it such that they define what part of the image
~ (052,008 should fall on the specified vertex. It is as if that part of the
images is stretched over the polygon. Texture coordinates’
axes align with the dimensions of the image as seen in Fig-
. ure 1.1. The coordinates in three dimensions can be labeled
FIGURE 1.1: Demonstrates the mapping of §, ) andy or, alternativelyss, ¢ andp. The process of tex-
and t coordinates on a 2D texture, ture mapping is thus often referred to as UV-Mapping. Once
a triangle has three points of reference within the texture,
from the texture coordinates of each vertex, the internal colouring eamtérpolated. Each component
of a texture coordinate has the range, p € [0, 1] such that(0, 0) is the lower left corner andll, 1) is
the upper right.

(0,0)

A 3" popular vertex attribute, after position and texture coordinates, is thabwh&l vectors. These
help describe the curvature of the smooth surface being modeled, as thisénmasical definition states
them to be orthogonal to the surface or line. Normals are used later in thengipar lighting and
shading the polygons and can have a big effect on how soft or hazdgmappears on a model.

There are two major processing stages in the pipeline, those of vertex@h@nocessing. The first of
these in the graphics (or rendering) pipeline is tlamsform stage Typically three matrix transforms
are applied to vertices: world, view and projection. The world transfasnirols the orientation and
positioning of a mesh in the 3D environment and is usually a concatenatiotatibrg translation and
scaling matrices. After the world transformyigw (or camerg transform is applied. Usually the viewer
can move around the environment as well rotate their view. To make calcuwaiiopler, the viewer is
always kept at the origin with no rotation the rest of the world is moved at@urThe view transform
transforms the mesh vertices into what is knowes spacer object spaceThe final transform is used
to project the triangles onto the viewport which is the application window or coengcreen. Most 3D
games use a perspective projection transform such sizes tapers offistdhce, whereas CAD tools
may prefer orthographic projection which have no dependence on.depth

The next major stage involves the drawing of the 2D triangles to screenpiiddsss is called rasteriza-
tion and generates a set of pixels that fill the triangle. The value of eatsx\atribute is interpolated,
from the three vertices, that corresponds to the generated pixel. A(pixehgment) processing phase
then takes place that can use these attributes to perform lighting and shaliinigtions, the result of
which is written to the framebuffer.

There are other intermediate stages as seen in Figure 1.2 and are debcefly in the following
section.
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FIGURE 1.2: Basic illustration of the major stages in the Graphics pipel On most modern cards, texture fetch
is also supported in the vertex and geometry processingstag

1.1.2 Modern Graphics Pipeline and Programmable Shaders

In the past decade, the fixed-function pipeline has become programraldaeng developers to cus-
tomize the vertex and fragment processing stages. A shader prograprises a set of instructions
that execute in parallel on the GPU. In the beginning they needed to beaprotpd in assembly, but
since then a number of high-level languages have arisen such as Dp&iGL, DirectX's HLSLand
NVIDIAs Cg. Using a high-level language unfortunately removes the performanceitinaa was pre-
viously obvious from the assembly instruction count. It is therefore stilebeial to view the compiled
assembly as an optimisation process. Programming for a GPU is different & $#0@PU. For example,
there is minimal branch prediction. Because of the SIMD architecture,@aehmust follow the same
path. When a branch is encountered, two things may happen: PrediddBOB], where all branches
are executed and the result of the appropriate one is chosen ; or resctn lis executed indepenently
in a sequential manner, resulting in idle processors. GPUs can perfmatingl-point operations on a
4-vector with a single instruction and even have an instruction (MAD) thanaaltiply and add three
operands. It is important to exploit such functionality to lower instructiomt@und increase overall
throughput of the massive quantities of rendered data.

Originally there were only two types of shader programs: the Vertex Slaadithe Fragment (or Pixel)
Shader. Since then, with DirectX 10 and Shader Model 4.0, a Geometdehas added to the
pipeline [MSD]. The geometry shader was available in GLSL via the E¥®metryshader4 extension
until the OpenGL 3.0 specification accepted it. Each shader program &ypbecused for different
purpose as is fit for that stage in the pipeline.

When a primitive, such as a triangle is pushed into the render pipeline, ttex @frader is the first to
encounter data. As input, the vertex shader receives an arbitrdex\esm the pipeline along with
its attributes such as normals, texture coordinates or colour. The usual jbb vertex shader is to
transform the vertices and normals into eye-space and to possiblymperéstex lighting, passing the
results down the pipeline. Very often, the same vertex is used more thanTdnisés done by specifying
vertex indices when defining primitives. Indices, when used correaly, o exploit the post-transform
vertex cache which is of a FIFO architecture. Arranging triangles intossfHipp99] are a means to
using the cache, but can still be outperformed by well organised triantgLl¥06]. When a cache-hit
occurs, the vertex does not need to be transformed again which aasigaificant processing time. A
Vertex Shader outputs the transformed vertex along with any associatbdtatir

The vertices making up a primitive are then received by the Geometry Shadeconventional render
pipeline, the GS simply sends the vertices as output in the same state they.ehitber&5 can be used,
however, to further process the primitive as a whole. It has the powesjeotrthe primitive, create
more primitives or alter the input primitive. The primary condition is that all ingirhftives are of the

same type and that all output primitives are of the same type. The GS mayotledsefused to perform
tessellation on primitives though the performance drop is roughly linear wsgrece to the number of
primitives output [NV108]. There is also a GPU-dependent limit to the nurobeertices and attributes



that may be output.

At this stage in the rendering pipeline, data may be output to VRAM using Dbec&tream-Output or
OpenGL’s Transform Feedback [Khrb, SA09] functionality, but isally passed to the next stage in the
pipeline, Rasterization. The resulting primitive is clipped against the viewphit means that if any
vertex lies out of the viewport, it is split into smaller primitives such that theycargained within the
screen. Primitives that face away from the viewer are also culled hbexk-face removak enabled.
The primitives are broken up further into basic fragments (or pixels) wéiieltthen passed to the final
stage.

The fragment shader is executed for each fragment. The vertex attrifuéach vertex on a triangle
are automatically interpolated across the pixels in the triangle so that the fraghaslgr receives the
correct values. The usual job of the fragment shader is to set ther@slthe pixel/fragment or perform
pixel lighting. It may also apply bump mapping or textures. After the shadsnggs, the fixed function
performs any blending that was specified for the destination framebuifepth values may also be
written to a depth buffer.

1.1.3 OpenGL

OpenGL (Open Graphics Library) is a common cross-platform API thatiges high-level control of
the GPU. The recently released specification for version 3.2 [SA09]dasl@unctionality relevant to
this project which targets Shader Model 4 GPUs such as the NVIDIA @eFband 200 series cards.
OpenGL 3.2 functionality can be compared with that of Direct3D 10.x. Thetlapexification has
removed the fixed-function pipeline transferring the vertex, primitive aaghient processing responsi-
bilities to programmable shaders.

A Vertex Buffer Object represents an allocated section of GPU memory ichwiertex data is stored.
This allows an object mesh to have its vertices stored in VRAM rather thannsys&mory which
decreases render time because data need not be sent across théagstdesh vertices almost always
have associated attributes. These attributes may be stored in the same VEO/editles, a process
known asinterleaving or they can each be stored in separate VBOs.

A Vertex Array Object is another OpenGL construct that is used to esotaig a set of render states and
data pertaining to a given renderable object. Prior to the adoption of VA@&sh would require each
of it's associated VBOs to be bound independently. This produced maosidal function calls. VAOs
are defined by associating a set of VBOs to corresponding attribute locatlis VAO need only be
bound to set up the state for the given mesh.

The modern graphics pipeline, prior to Shader Model 5, as describegctios 1.1.2 contains three
programmable stages. OpenGL provides a shading language, Opers@inghanguage (GLSL or

GLSlang), that allows control of the vertex, geometry and fragmentgsging stages. The 3.2 core
specification introduced the Geometry Shader which provides a meandiividaliriangles.

After the Fragment Shader stage, fragments are blended and written tamebiiffer. Framebuffer
Objects [Khra] have been introduced into the OpenGL specification. prwyde virtual framebuffers
that allow rendering to be done to image buffers or textures rather thapdtesrss framebuffer. This is
useful for post-render processing and the altering of textures. EBOsallow MRT (Multiple Render
Targets) to be bound so that a single render call can output to multiple textubgffers.

Finally, OpenGL's Pixel Buffer Objects provide an interface for transgfetween RAM and VRAM.
Their are two types of PBOs&InpackandPackbuffers, that allow transfer to and from the GPU respec-
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tively. Rather than wasting CPU and GPU cycles on the memory transfeis Ria®e use of machines
DMA to perform the data transfer allowing a higher level of asynchrapat program flow.

1.1.4 General Purpose Computation on the GPU

Once people realised the parallel computation power of GPUs, they beganshaders in new and
interesting ways. The computation-to-price ratio is outstanding and is aigoeaitive for scientists
to invest in powerful GPUs in order to run simulations [Gre05a]. Many rittgms were implemented
on the GPU such as N-body simulations, large matrix multiplications and finite efiifer schemes.
Although these produced much faster results, their implementations wetiatadive and very finicky.
Since then NVIDIA has released their GPGPU framework named CUDA (Qtmignified Device
Architecture). CUDA creates an abstraction of the GPU hardware salévalopers may treat the
hardware as a collection of SIMT processors which execute generielkgather than hacking graphic
shaders together. Many of the graphical effects use a GPGPU-apptmach and CUDA can be used
in conjunction with OpenGL to simulate and render fluid simulations or particle simugatio

The geometry shader can be used as a stream processor [Dia@fhped calculations on vertices
containing arbitrary data and writing variable-length results to feedbaff&rblor arbitrary texture lo-
cations. This flexibility enables a wide range of algorithms to be implemented orRblea@d is useful
to multi-pass techniques for writing intermediate data.

1.1.5 Memory

Modern GPUs offer a significant amount of memory. The memory can lzedisectly via the CUDA
API butis only accessible implicitly in OpenGL via constructs like textures an@¥.B5toring geometry
and images on the GPU is a favoured approach as it minimises CPU to GPU rmfertrahich has
high latency. This is enforced in OpenGL 3.0 with the deprecation of immediate @uod the fixed
function pipeline, leaving Vertex Buffer Objects as the only solution. Alttotingir purpose is to store
graphical data, VBOs can be used to store other data in GPGPU applidatierample. It is beneficial,
though not essential, to understand the different sections of GPU meMNglg][ their advantanges and
disadvantages, and what get stored in each of them.

Image textures are stored in Texture Memory. The benefits of texture memmwny from the caching,
where spatial locality is exploited by loading adjacent texels into cache. résdpe available to all three
shader stages for sampling however texture formats, addressing nmati@seapolation may be limited
in the earlier shader stages. Textures are a useful alternative to VB8@®®wallow radnom access
reads, though this use-case may not benefit from caching. It is adsibpoto dynamically write/render
to texture objects from the fragment shader with the use of FrameBuffEc@uFBOs) [Gre05b].
The location of the written fragments may controlled, for the purpose ofraratcess writes, using a
Geometry Shader.

Textures can be used to store arbitrary data such as mesh data as wellfhveheoordinates are stored
in colour channels. Such textures are knowrGapmetry Imageas seen in [HR06]. An advantage
of Gls is that level-of-detail (LOD) meshes can easily be created using rpgpofahe Gl. Mipmaps
are sets of scaled-down versions the original texture that accompartyey. are created by repeatedly
halving each dimension of the texture, storing each smaller image as anothermigwelauntil a size
of 1 texel is reached. They help to reduce scaling artefacts.

11



1.2 Surface Detall

Real world surfaces are never completely smooth. It is therefore impgararomputer graphics, to in-
crease realism of objects by adding details to the surfaces. A numbehofdaes exist that accomplish
this task: some modify the geometry whilst others affect the surface shdditigis section a mesh is
assumed to have corresponding normal vectors at each vertex wiidieassed in per-pixel lighting
calculations.

1.2.1 Displacement Mapping

Displacement mapgC0084] are textures containing elevation data. Such height fields casdukto
display fine detail on geometry or to represent larger coarser mesisptad2ment maps are mapped to
a mesh in the same way as regular colour textures. Displacement maps adsm#igalthe geometry
to add the detail rather than performing shading. Each texel containseaimdlgating the magnitude of
the correspondingvertex’s displacement. These maps appears ag gtayscale images when viewed
as images. The displacement map defines a surface in a plane tangentiginal surface. A given
vertex looks up its corresponding displacement in the map using its texturditates, and the vertex
would then be translated accordingly along its normal. Equation 1.1 demortstkatine vertex’s new
positionv is calculate from the original using the height from the displacement m@ps, ¢) and its
normaln.

v=u+ D(s,t)h (1.1)

Because displacement maps operate on vertices, a dense mesh is riequided to represent detail of
sufficent resolution otherwise the resulting mesh appears pointy andligtice A common technique
is to further tessellate the surface into smaller smaller triangles before apgigimtisplacement map.
Displacement maps are commonly used to generate terrain meshes, in whitbrsthey are referred
to as heightmaps. This is usually performed as an initialisation step on the CPWijthunodern
hardware displacements in the Vertex Shader are possible with minor penferhas. Heightmaps
can be generated in a number of ways. One method is to use Perlin noise gltmminol of different
frequency layers. Another popular method is the Diamond-Square algofiRC82] which is a fractal-
based approach.

FIGURE 1.3: An example of a 1D displacement map and the line it represents

Once the surface is displaced, the vertex normals are no longer cancatust be recalculated if they
are needed for lighting. We know from calculus that the normal at anyt pbensmooth surface can be
computed as the cross-product of the tangent and binormal vectdhis &stheir definition. Thus the

displacement surface’s hormal can be calculated by choosing the tamgkbinormal vectors to be the



changes in the andt texture coordinates respectively. [SKUOS8] give an in-depth look @iatement
mapping and these calculations.

If the original mesh is just a horizontal plane, then the calculated normabearsed as the normal,
otherwise it needs to be combined with the normal of the base mesh to find théramtmal. To avoid
the complicated combination, lighting calculations are usually performed in magpace [SKUO8].
This space is defined as the space with tangent, binormal and normal asstberdctors. The paper
mentioned covers the math involved. Alternatively, instead of calculating tmeais, they can be stored
in a normal map texture to save computation.

Displacement mapping is a very useful technique for adding surfacé ttedense meshes, coarse
terrain meshes or for dynamic surfaces such as ocean waves. Reakformation is thus also easily

possible by simply editing the displacement map. For uniformly dense meshiyirgnbecomes an

expensive process in which case image techniques like bump mappingdre us

1.2.2 Bump Mapping

Bumping mappingas introduced by Jim Blinn [Bli78], involves varying normals across faserin such

a way that it appears to have bumps on it when lit. Bump mapping is sometimesyusgysiously
with normal mappingand on the odd occasion refers to an image heightmap. In Autodesk kdaya,
instance, the user can supply a grayscale heightmap as the bumpmap ftivaeesionplicitly converts
the to a normal map and then applies normal mapping. Bump mapping is used kesraatiae to
displacement mapping because it is a much less expensive method focipepfilme detail. This is due
to the fact that it operates on fragments rather than vertices.

Normal Mapping

This was the technique introduced by Jim Blinn whereby a vector field/maprofais is supplied with

a mesh. The values in thisormal mapare merely the normals along the surface being modeled. The
texture coordinates of this mesh are used to index the normal map and locederdsponding normal.
Using this “fake” normal, the usual lighting calculations are performed.litmB paper he demonstrates
the bumps of an orange skin applied to a sphere. Traditional texture magbsptacement maps can
be used in conjunction with Normal maps to create composite effects. Normalimyaprovides a
computationally inexpensive means to displaying fine detail on surfaces.

Parallax Mapping

This technique [KTt 01] extends the notions of texture and normal mapping by considering thkeza
effect. Consider your line of sight to a swimming pool floor. Imagine now ti@tloor is actually the
triangle to render and the water surface is the bumpmap surface. Theopdin¢ water surface that
the view vector intercects is not orthogonally above the floor point that tsates. This is the parallax
effect. Traditional normal mapping would incorrectly lookup the heightgigire floor point’s texture
coordinates which is not the height of the surface at intersection. thp@allax mapping locates the
point of intersection and its corresponding texture coordinates. Tlesdinates are used instead for
looking up heights, colours and normals from the relevant texture maps.

The original n@ve parallax mapping approach uses a constant surface height apatiox to simplify
calculations. Although this is an approximation, it still yields better results themadonapping. Other

13
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FIGURE 1.4: lllustrates the principle behind parallax mapping. C is fm@jection used in normal mapping, B is
the ndve parallax mapping using a constant surface, whilst A destrate the correct solution.

approaches exist for locating the actual surface intersection point aithing accuracy and compu-

tational cost [SKUOQ8]. These techniques include iterative searchrybsearch, secant methods and
others as heuristic approaches that find the closest intersection sometionessure that the closest
intersection is found expensive searches are required. In additiaitréopeocessing, Parallax Mapping

requires both a normal map and a height map.

1.3 Mesh Representation and Level of Detalil

The choice of mesh representation and storage is very important due tacththdt large terrain
can require vast quantities of vertices. There are various LOD teatmithat employ methods to
reduce the detail of far away regions. Popular techniques include: MRQReal-time Optimally-
Adapting Meshes) [DW$97], Chunked LOD, BDAM (Batched Dynamic Adaptic Meshes) and Ge-
ometry Clipmaps. These algorithms are mainly implemented on the CPU, howetldhearesulting
mesh data passed to the GPU for rendering.

It is difficult, but essential, to acquire seamless transitions when changndetiil level of a region

as the camera moves over the terrain. Geomorphing [Hop] is a techniqumathablve this problem.
When a higher density mesh moves into a region that was represented bgraléowity mesh, the extra
vertices immediately jump to the intermediate heights that were previously unsgémenpolated on

triangle edges. Geomorphing requires the extra vertices to move gradwedlgdthese intermediate
heights rather to maintain continuity.

1.3.1 Geometry Clipmaps

Losasso and Hoppe proposed the method of Geometry Clipmaps [LHG4]isTdhgeometrical parallel
to the idea of texture mipmaps and involves the creation of a pyramid of clipmagsds: Each
subsequent level is has the same number vertices as the previous legehfumes twice the space in
each dimension. The idea is for the camera to be situated at the centre astidaateof these grids on
top of one another such that the resolution of vertices halves in regulardlg@way from the viewer.
When projected into screen-space, the triangles of subsequent lemsisnte the same area and thus
provide sufficient detail to the viewer.

The algorithm was implemented on the GPU [AHO5] and yielded good perfarenaihis method

14



supports heightmap compression and decompression and runtime detadssyrstiich fractal detail
from uncorrelated Gaussian noise.

1.3.2 Tessellation

Tessellations a process whereby a given surface is split up into polygons that folMgrahe original
surface without overlaps. In computer graphics these polygons asdlysjuads or triangles. Min-
imising vertex count in meshes is critical to increasing flow through the grajpipeline. The goal for
tessellation in graphics applications is to produce smooth looking models frarsecmeshes. This was
a very difficult and expensive multi-pass procedure before the inttamuof Shader Model 4.0 and the
Geometry Shader. Although the geometry shader is limited in comparison to thenedsellation
pipeline it still makes tessellation possible.

Tessellation is an inviting concept for displacement mapping. If tessellatiobeadone in an adaptive
manner, such that areas of greater displacement are more dense;edispid mapping will become a
more prominent technique for displaying detail [MMO02]. The most simple foftriangle tessellation is
to equally subdivide the triangle on a plane using a bilinear interpolation bfafahe vertices and their
attributes. For an already dense mesh, this is sufficient but for lowalutEs meshes, interpolation in
the orthogonal dimension is required to produce smooth enough results.

Phong Tessellation [BAO08] is a technique that follows a similar process to that of the interpolation
of normals in the Phong lighting model. The purpose of the algorithm is to creaietk silhouettes
and contours rather than generating formal parametric surface ap@ations. The algorithm simply re-
quires all the triangle vertices with their normals. From these attributes a newahpmint is generated

by projecting the point to the vertices’ tangent planes and then interpolaing barycentric coordi-
nates. This is a simple heursitic for creating smooth tessellations on top of wihibkeif displacement
mapping can be performed.

Subdivision Surfaces Like most graphics concepts, the generation of smooth surfaces haa been
search topic for many years. A number of mathematical surface repatises have been considered
such as tensor product surfaces and B-spline surfaces. Evaltiaisg parametric surfaces is an ex-
pensive process [HLWO7] and not suitable for real-time implementation. Qlaamadi Clark [CC98]
devised a method for generating approximations to these surfaces withadtiusccuracy, a method
termedSubdivision A subdivision surface is defined by a coarse (usually rectangulash ik@own as
the control mesht is akin to the control points in parametric surfaces or splines. Each d&ties can
be subdivided according to rules specified bgfinement schenfEOO09]. This refinement process is
performed recursively until the desired level of detail is reached.

Catmull-Clark subdivision converges quickly to a bicubic B-spline limit swefatter few iterations.
The benefits of this method are quick convergence, simplicity of implementatibtharfact that each
patch can be generated independently with just local information. Less méreuired to store the
control mesh than would be needed for usual smoother meshes. The lofdfig/tessellation allows
for relatively easy parallelization. In order to subdivide a quadrilatéralguad’s vertices and the 1-ring
neighbourhood of vertices are required.

Currently two major schemes exist for computing subdivision on GPUs [Ragine involves multiple

passes with intermediate results being stored in graphics memory whilst thgetfmms direct eval-

uation in a single pass but requires texture lookup tables for tessellatiomgafiéne algorithm can be
simplified if constrained to input control meshes with vertex valences of dd&ju
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Another approach is to parallelise each step in a breadth-first appie&E09]. The different stages
are facepoint generation, edgepoint generation, vertex updatingeaddring. This approach is more
suited to a CUDA implementation where each stage can be shared by allTheagertex dependencies
of faces on arbitrary meshes is non-deterministic however, thus making meaagscing difficult.

A final evaluation method of Catmull-Clark surfaces involves storing the lfasigions in a texture
along with corresponding 1-ring control points [HLWO7]. This would allewact evaluation of the
surface after lookups.

1.4 Summary

The Graphics Processing Unit has become very powerful procesdorast functionality. The pro-

grammable pipeline provides the option of performing previously CPU-balgatithms on the GPU.
This frees time on the CPU for performing other intense calculations sudhyaip and artificial intel-

ligence. Along with these, the time spent waiting on bus transfers to GPU memotyeclessened by
storing and computing everything on the GPU.

With regards to deformable terrain, the use of heightmap textures to stoati@tedata is perfect given

that graphics APIs now support render-to-texture operations. Msteach as Geometry Clipmaps
provide an efficient solution to representing very large heightmaps asell&sn techniques can allow
higher resolution sections of the terrain mesh.
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Chapter 2

Design

The work of the project is divided up into three components of equal welagure 6 shows the divi-
sions. The first and second components share a common frameworkisvhallaboratively developed
by the two respective members. This common framework allows for coarskedeformations to take
place on the terrain and the implementation of the caching system. The coratpplatso includes the
representation of the terrain mesh and basic rendering functionality. Timedistinction between the
two components comes about with the addition of high-detail deformations tathimtel he following

subsections highlight the work of the different components and how fiffeyahtiate from one another.

FIGURE 2.1: Shows the architectural layout of the entire project, whh focus of this report shown as the left
(green) cylinder.

2.0.1 Geometry Tessellation

The first method implemented for the representation of high-detail deforrsats®ms displacement map-
ping on a finer scale. Due to the coarse granularity of the raw clipmap miegbly sdisplacing the

existing vertices yields no extra detail. For this reason, the existing meshherfuessellated, or re-
fined, such that each triangle is subdivided into 9 sub-triangles. Thkingsvertices are then displaced
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according to the high-detail data. High-detail is only considered in regimse to the camera and only
the inner grid surrounding the camera is thus tessellated. Ideally, tesseliatiomthis grid would be
adaptive, in that regions would only be tessellated if high-detail data existestead, as this imple-
mentation currently stands, tessellation is performed for the entire inner ghiohw&t specified radius.
This method does however yield consistent performance hits. The penfice of an adaptive approach
would decrease in areas of much high-detail, although the averaggedsemance would be consid-
erably better.

2.0.2 Texture-Based

This implementation relies on texture trickery techniques such as normal aaithpanapping. The
aim of this implementation is to produce the illusion of high-detail on the terrain wittieuover-
head of creating additional geometry. This should allow for unlimited deformstio occur without
any noticeable slow-down since there will be always the same amount ofegsoin the scene. The
process involves more texture reads and a more complicated lighting calcutatse overheads will
reduce the performance of application. However, this penalty is constagpective of the number
of deformations. This effect is purely illusionary and as a result hasiodimitations that must be
managed to prevent artefacts becoming noticeable. This implementation will todipetly with the
aforementioned geometry tessellation one.

2.0.3 3D Vision Interface

This component forms the front-end to the two separate back-endstdebabove. This interface is a
computer vision based system wherein the user interacts with the applicagetiydthrough the use

of gestures. This component is designed to integrate easily with the twoygdfon components. The
vision system uses object tracking, background subtraction and minimalf lbend pose estimation to
create a functional input device from the users hand, hand occlysige, and position relative to the
computer monitor.

The contents of this report focus on component one on geometry tesselldioinformation pertaining
to the other components, see respective documentation.

2.1 Design Constraints

This project focuses on the development of a terrain system for moderputer games. For this reason,
there exist certain constraints that the system must satisfy. The firstamiteithat the terrain’s visual
appearance should be acceptable by modern standards. This meamasrthahould be no obvious arte-
facts such as holes in the terrain nor sudden changes in geometry orgsHadaddition, the rendering
quality should be of a high standard. The second, and equally importastraimt requires the system
to maintain at least real-time frame-rates. Specifically the target frame-rateser to be 60 frames
per second. Although this is much higher than a minimum real-time frame-rateyéslealy a small
amount of time for all other rendering and game subsystems such as péydigd. A third constraint
involves the terrain system itself and regards the target resolution of thetbg8hould be achieved: the
system should be able to clearly represent deformations on the scaletpririb outlines. The target
hardware for this system is the previous generation of graphics cingse are the Shader Model 4.x
cards such as the NVIDIA GeForce 9 and 200 series cards.
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High visual quality and the rendering of high detail deformations eaclotafie frame-rate constraint
considerably and thus make it difficult to satisfy all three constraints simualtestye Aspects that may
challenge the frame-rate include the linear performance drop due to Ggddhetrder tessellation, the
number of triangles in the raw terrain mesh and texture fetch latency. Nefingpee operations can also
affect the frame-rate or cause jerking in the game. The application afrdafimns is an example, as well
the loading of cached heightmap textures and the generation of their noMmsalal quality concerns

include slow texture caching, T-junctions in the irregular mesh and sudumrges in level-of-detalil.

All of these possible problems are considered within the system design.

2.2 Detail by Mesh Refinement

This research focuses on a tessellation method for representing hajheldgormations. High-detalil
deformations are applied to the mesh in locations near the camera by firfiatexgéhe triangles to a
higher resolution and then displacing them according to the deformatiorsyBtem can be divided into
two distinct subsystems. The first is that which provides a frameworkefimrohation of the terrain data.
The second is the rendering component, providing a method for the displayisual representation of
this terrain data. The two subsystems may be changed independently drthedenderlying, common
terrain data structures remain the same. These are described in Sectionr2tBid project, however,
these two subsystems were designed with each other in mind so as to allowy@anebefficient com-
patibility and to satisfy the design constraints in the best manner possible. cemoial relationship
diagram is shown in Figure 2.2.

Terrain System

Renderer Deformer
I I
I | I |
Clipmap > Tessellation < Heightmaps |—« Deform
. Shaders . FBO | shaders
VBO Screen Output Texture

FIGURE 2.2: An architectural view of the terrain system and its major poments. Green arrows indicate the
flow of data.

In the following sections, the design of the terrain is described in greatait.dgection 2.3 covers the
use of data structures both for terrain elevation information and the medhasepresent the terrain
during rendering. Section 2.4 details the processes concerning nexsnadgibons, caching of height data
and rendering. The focus of the design is to create a system that relitleas possible on transfers
across the bus between the CPU and GPU. Most of the data is thus stared®RAM and processing
of this data is done by the GPU.

2.3 Data Structures

The storage of the terrain data is split into two parts. The terrain elevatiorgdatared in textures
as heightmaps. This means that the terrain representation is 2.5d and teeppwt any overhangs.
The second part of the data storage concerns the presentation,naedimg of the terrain. Here the
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underlying approximating structure is stored as a flat mesh called a clipmameightmap data is used
at render-time, on the GPU, to displace the clipmap and represent the tmracreen. More detalil
follows in the subsections below.

2.3.1 Elevation Data

The stored terrain data consists of elevation values at discrete pointe &lawation data are stored in
the form of heightmaps in GPU texture memory. Each heightmap has an assocateal map that is
used during lighting and displacement, as well as a color texture. Thete@eets of textures used to
describe the terrain. The first set is referred to as the “coarse-raapgsiescribe the terrain’s elevation
on a large scale. These coarse-maps are positioned adjacent to trer &ama grid-like formation and
can represent a large area due to their relatively low resolution. Fomttpeges of this project, only
one coarse map is being used with the focus being on high-detail. It isseccemoidally to give the
appearance of an infinite terrain. Adjacent texels within the coarse-maplineaply to adjacent texels
in the finest level of the terrain mesh.

The second set of heightmaps is referred to as “detail-maps” and aréoubescribe the fine detail, such
as footprints, which is the primary focus of this project. The resolution oflétail-maps is dependent
on the level to which tessellation can be performed as anything larger wotilsernoticeable. Thus

if the mesh quadrants were divided by a factorMofper side, the detail-maps would have a higher
resolution than that of the coarse-map by a factoNof The detail-maps are positioned in the same
grid-like manner so that any arbitrary region can have unique detail. \Moy eetail-map is be loaded
in memory simultaneously, but a caching system instead chooses those trldkesviewer. The detail
blends out gradually as it moves away from the viewer. The cachingsystescribed in Section 2.4.2.
Covering the entire terrain area with detail-map textures requires conslielenamory. The CPU stores
a matrix, mapping to the terrain, of texture IDs which identify which detail-maps¢ameach section
of the terrain.

Depending on the range of height, the bit-depth of the heightmaps need tmgbeitaorder to avoid
aliasing. This is certainly relevant for the coarse-map which needs teseprpeaks and valleys with
reasonable detail. In this case, 16-bit components are used to storkoal@lata. The detail-maps,
however, only represent small deviations from the landscape and arg\otily require 8-bit data for a
range of 256 values. In addition to the elevation data, each heightmap baesponding normal-map
texture that is used during the lighting stages. These normal-maps arelteisg@fter deformation of
the heightmap.

Using a heightmap texture as the data structure allows for easy and fasnhd&bns to be performed
on the GPU with textures being used as render targets. Both the coarseanthfetail-maps are de-
formable. Deformations are applied by changing the intensities of theseimeaigf according to prede-
fined or procedural patterns. The deformation process is furthargtied in Section 2.4.1.

2.3.2 Mesh Representation

Due to perspective projections used in games, objects become increasiailigr as their distance from
the camera increases and less detail is thus required to represent thabgaeheT his is the primary idea
behind the technique of texture mipmaps. The same idea can be applied to yaoestes where the
size of mesh quadrilaterals doubles in size at regular intervals. The cliprsapdsated into a number
of nested grids. Each successive grid contains quads of double ¢hanglzhas a hole within it, within
which the smaller level can be nested.
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Each level containg/ vertices along an outer edge. Fitting levels within each other is not triviasand
the method proposed in [AHO5] is used to build the clipmapis chosen to béV = 2¥ — 1 wherek

is an integer. Each level surrounds two sides of the contained level with aflougads in an L-shape.
Square blocks with sides éff = ”T“ vertices are used to surround each corner, wfikatipblocks of
M x 3 vertices fill the centre of each side. Around the edge each level, degengangles are added to
join quads of different sizes. This is done to avoid T-junctions, whicHeath to obvious artefacts. This
layout is shown in figure 2.3. The L-shape alternates sides for eackssiee level. Although there is
some overhead in adding all the degenerate triangles, the hardware te addegnise and cull them

quickly [Spi].

FIGURE 2.3: This figures illustrates the structure of a 2-level clipmathwy = 15 vertices per side and a block
of sideM = 4 vertices. The outer L-shape belongs to #ié level. The pink dot represents the camera; orange
blocks are the L-shape; blue blocks are fix-up regions ; reddiare degenerate triangles.

Note that the finest grid is not located at the centre of the clipmap mesh, big tlisnoticeable with
large values ofV. Each vertex has associated texture coordinates to be used for logkeiguation
values from the heightmaps. The camera remains centred on the finest Ragler than shifting
the geometry around the camera, during rendering, the camera’s locatisadgo offset the texture
coordinates so that the heightmap texture is translated over the clipmap. rlibessef the finest quads
sample adjacent texels from the heightmap so that the vertex spacingoomaedo texel spaces. The
p'" level thus samples evedf—! texels. Although the clipmap mesh is not translated, it is still rotated
about the origin to represent the camera'’s orientation

In order to present high detail deformations using the detail maps, thé¢ liévetis tessellated further
in regions where higher detail exists.

2.4 Core Processes

The terrain system has three major areas of processing. The GPU laslér the terrain state every
frame and is also responsible for the deformations that could occur amgfrThe CPU is responsible
for the loading and paging of detail-map textures from and to the hard dssith most game systems,
everything is controlled by a main looping game thread. Each frame the pasci® state of the input
devices and responds accordingly. If any deformations are to be nisde are setup and executed
by the GPU. A separate thread is create to perform texture paging and ihehmead controls their
communication. The following three sections cover these processes in depth
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2.4.1 Terrain Deformation

The primary aim of this project is to design a system for computer games in wecterrain can be
modified in real-time. These deformations need to occur without noticeably tmgaerformance and
without creating visual artefacts that would detract from the realism amldtreak a user’'s immersion.
Section 2.3.1 covered the representation of the terrain’s elevation as t#rhafgreferred to as the
coarse-map. This coarse-map is initialised to some default terrain usinglaitrary technique such
that the initial state of the environment is realistic. The terrain system als@dpsodata structures to
store higher resolution details whose presentation is discussed in Sect&n 2.4

The deformation system thus provides two modes for terrain modification firfehenode allows de-
formation of the coarse-map which represents the main topology of the tefilai® mode affects the
terrain on a large scale in accordance with resolution of the unrefined fileslsecond method provides
further control of the terrain, allowing higher resolution modifications.db@ftions on this level affect
the array of detail-maps and can only be seen by further tessellating ibadragin mesh. Aside from
the maps on which they operate, the two modes differ in a few ways. Thisfiosglity: Because detail-
maps must be within a certain range before they are stored in VRAM, as ésexbin Section 2.4.2,
there is a limit on the distance from the camera at which high detail deformation®engerformed.
The coarse-map however, is not limited to the same degree and can bmekkfas far as possible.
The user interface may still limit users on viewable distance however. 8hcdme two types of maps
interact differently with the camera. The coarse-map represents thmtge@metry and is frequently
required for collision detection. For this reason, when it is modified, theseemap must be returned
to system memory in order for the CPU to perform collision detection. The datgk however, have
no physical interactions with the camera and are limited solely to visual fekdBacause there is no
collision feedback from high resolution deformations, the maximum amplitudeestttisplacements
should be small enough such that the lack of collision is never noticeabddr. Stie purpose is provide
high resolution visual detail.

The elevation data for coarse-maps and detail-maps are stored in texiutes @PU. Deformation is
performed by using render-to-texture functionality provided by thelgcapAPI. In order to minimise
the time taken to render these deformations, the affected region is calcubatiedt the update may
be localised, avoiding unnecessary computation. Once a deformatiorcdwaseal the corresponding
normal map becomes invalid and must also be updated. The normal map upalategsrformed in a
sub-region of the texture to maximise performance.

The deformation system provides two methods for applying displacemergdfirghis with the use of
predefined textures termetiamps Stamps are regular heightmaps containing grey-scale data, where
black indicates a maximum impression and white, a depression. A blend faatbeapplied to control
the intensity of stamps before their values are added to that of the heightimaptaimp may be rotated
or scaled as is fit for the context. As an alternative to stamps, the systemtgp#re use of procedural
stamps for deformation through the use of custom shaders. Rather thay biening a texture,
procedural stamps allow the deformations to be defined programmaticallyreatdheir shape may be
dependent on any application variables such as time, position and arb#itags. In order to apply a
stamp to the coarse-map or detail maps, the location must be provided in teodulgates. These may
be acquired from the horizontal components of a given position in theaemagnt. In the case of the
coarse-map, these coordinates can be used directly, but for higlaties deformations the detail-map
in question must be identified as well as the relative location within this map.

There are a number of issues regarding the consistency of deformatimnpance. The performance
is highly dependent on the size of the region being altered. The time takeages further when defor-
mations occur on the border between heightmaps. In these casesiesepadar-to-texture operations
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must take place for each heightmap in question. The worst case scenahieridarge texture deforms
a region that covers the corner between four heightmaps. Detail ddfommare limited in size to that
of one detail-map.

The functionality provided by this system offers many applications for modemputer games where
dynamic terrain would add to the playability and realism. Coarse-map deformatonnd be used as
results of explosions, digging, ploughing. Detail can be used for butlietshfootprints or impressions
in soft terrain such as snow. The procedural stamps allow variabilityeor the addition of noise to de-
formations so that consecutive deformations appear different. Due toaheer in which deformations
are stored, that of using textures, no decaying detail is required toesswmarces. Many computer games
remove dead bodies or bullet holes after certain periods of time to save menabrgdaice processing.
This has an effect of detracting from a game’s realism. This deformat&tersydoes not remove any
detail over time thus maintaining the game’s realism.

2.4.2 Caching System

As mentioned in Section 2.3.1, the terrain is divided up into a grid of tiles onto whekletail-maps
map. The number of tiles required depends on the resolution of the high ohetstil tessellation, as
the texels of the detail-maps are in one-to-one correspondence with teskekatices. Consider the
example: A terrain consists of a single coarse-map of dimenSnr= 4096. The underlying clipmap
mesh has a resolution 6§ = 0.1m at the finest level. The finest level is refined by a factoy of 1/3
yielding a tessellated resolution & = vdc = 0.03. Texel distance for the detail-maps is thizsand
the number of tiles can then be calculated using the dimensions of the detail-map teXyres 2048.

- dcNe
v9cNp
_ Ne
~ ANp
_(4096)
~ (1/3)(2048)
=6 (2.1)

Atotal of n xn = 36 tiles are thus required to cover a small coarse-map. Storing these on the/GiiRL
consume 144 MiB of VRAM, excluding the normal-map textures which wouldiregan additional
200% of memory resulting in 432 MiB. This is an unacceptable amount of memory fotetinain
system to consume alone. In addition to this, computer games would need tthstdeerain mesh,
game models and other textures. This also puts a very low upper boundsampiteated size of terrains.
This example illustrates the necessity for a caching scheme.

Because there is only one coarse-map, it is not cached and remains inynérhercaching system
stores an array of all the detail-map tiles and their states. A tile’s state cons@tsAativeflag and
Loadedflag. A tile isloadedif its texture is currently loaded in GPU memory andadtiveif it is
currently visible on-screen. When a tile gets unloaded, the texture’s memuognsferred to system
memory and immediately written to the hard-disk. The opposite occurs for thim¢ppobcess. Due to
CPU-GPU bus latency, hard-disk read-speeds and system memorjatepgy, the loading process is
far from immediate. The caching system must therefore issue load requestsonable duration before
a texture is required. In terms of this caching system and tile states, a tile madt¢Hoaded well
before it becomes active. In order to not stall the game loop, texturéngaehpaging is performed in
a separate thread.

23



The caching system bases the calculation of load and active states omigra'sdocation within a tile.
The current tile is divided into nine regions. These are formed by cretimgands, one horizontal and
the other vertical, spanning the tile across its centre. The band repradesmsition region. When the
camera sits within the horizontal band, as in Figure 2.4(b), both verticallgewljsiles must be loaded
in memory but neither active. As the camera moves upwards into the top-teérdgigure 2.4(c)), the
bottom adjacent tile is unloaded and the top tile becomes active. In the casecefiine region, where
the two bands overlap, all nine adjacent tiles must be loaded. This is thé eeses and is shown in
Figure 2.4(a). This scheme permits a situation where entering and exitingoa deges not result in
a unload-load sequence which could cause textures not to be ready haeling latency. This does
however cause a load-unload sequence of events, but this is transjgethe user. The transition period
provided by the band can be altered by widening or narrowing the bands.

= O OF

(a) 9 loaded, 1 active (b) 6 loaded, 2 active (c) 4 loaded, 4 active

FIGURE 2.4: Demonstrates three caching cases for three different regi®range tiles represent a loaded but
inactive state. Green tiles indicate an active and loadatkest

Initially, if no existing cache is to be loaded from disk, all tiles share a textoring zero deformation
data. When transitioning between regions, no loading and unloading issaegeThis saves processing
time that would have been spent wastefully. When a deformation operatierniasped on a tile using
the zero texture, a new texture is created for the tile as a copy of the zéucetaxd the deformation
is then performed. Another optimization is that textures are not cached taulisgs they have been
modified since they were loaded. To save time spent waiting hard-diskstsarel bus transfers, normal
maps are not cached but are rather recalculated each time a texture @ Idafleal note about the
memory usage is that it can be further minimised by making use of compressae tormats on the
GPU.

2.4.3 Rendering Process

This process is responsible for presenting the terrain and environmtéetuser. This is the mostimpor-
tant section as it must satisfy both the frame-rate and visual realism datstrBhese two constraints
have an inverse effect on one another and thus require the proces$utte enough optimization so
that both criteria may be sufficiently met. The rendering pipeline also includgztitess of refining or
tessellating regions of higher detail - the primary focus of this research.

A number of simple and common graphics techniques are employed to rentieréie. As mentioned

in the previous section on Data Structures, the terrain’s mesh is represesiig a geometry clipmap
with vertical displacements defined by a heightmap. Rendering this clipmap@iotgces acceptable
detail for a regular terrain and allows for the presentation of coarsd-tformations. The aim of
this research, however, is high-detail deformations such as that frfists and imprints on the scale
of tenths of a metre. In order to render these high-resolution displaceiienterrain needs to be
tessellated to a higher degree. This process refines input triangles ettofessib-triangles which then
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sample the detail-maps. Diffuse Lighting is applied to the triangles using thesgederormal maps to
add to the realism and to improve the visibility of deformations. The terrain’sicidsampled from its
colour-map and combined with this diffusive factor.
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FIGURE 2.5: The above diagram illustrates the main components of théemiémg pipeline and what parts are
handled by each shader

The refinement process tessellates a triangle into many sub-trianglesgethesiiotal number of ren-
dered triangles to be considerably larger. This refinement is performiba iGeometry Shader. The
performance drop is roughly linear with respect to the number of attributétee [NVI108]. For this
reason, tessellation should be limited to the smallest number of triangles po&sbkaise high-detail
would not be visible from far, the refinement only takes place in regions witf@riinest clipmap level
and a certain locality to the camera. These details are blended out as thejntodhe distance. Local
refinement is implemented adaptively within the Geometry Shader where fidllggs® only occurs if
there is high-detail associated with all three triangle vertices. Although theapmeometry is indexed
and stored on the GPU, the vast number of vertices still takes a relativaytitoe to render - most
of which are not visible. In order to reduce the input to the Vertex Shadel in turn the Geometry
Shader, frustum culling is implemented on the CPU to omit non-visible triangleard=y5 illustrates
the render process.

Frustum Culling

As discussed in Section 2.3.2, the clipmap is split up into block&/ok M vertices during creation.
All triangles in the clipmap are stored on the GPU as a list of indices. The blrekeecorded along
with the range of indices that cover the block and the corner vertices. fEsane, the peripheral vertices
marking the bounds of each block are transformed using the camera’draiesiorm. If any of the
block’s corners fall within the view frustum, the block’s indices are apleento list of render-ready
indices. Any block that falls out of the frustum completely is omitted from reinde The M x 3
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vertex fix-up regions are also considered as blocks, but the L-shdpegenerate triangles and the finest
clipmap level are not checked and are rendered every frame regmaiethey constitute a relatively
small percentage of the triangles. This frustum culling result is illustrated ur&ig.6 in comparison
to Figure 2.3 in Section 2.3.2.

Although the pre-render frustum culling removes a considerable ambwotk from the Vertex Shader,
itis imperative that the minimum number of triangles be processed by the Geddheirigr so as to limit
the amount of expensive tessellation. Per-triangle frustum culling is thtsrpeed by the Geometry
Shader allowing it to reject non-visible triangles before doing any fupithecessing.

FIGURE 2.6: M x M and M x 3 blocks are culled on the CPU before the render call. Thisrohp is at a low
resolution so as to make it more visible.

Vertex Shader

The primary job of the Vertex Shader is the displacement of the heightmappis the Vertex Shader
receives the raw clipmap un-elevated vertices along with their textureicated. Because the clipmap
remains centred on the camera, motion is simulated by translating the textureeosiptap. The Ver-
tex Shader shifts the texture coordinates of the vertex according to thetoohthe camera, followed
sample the elevation value from the heightmap use the translated texture evardifier applying the
elevation to the vertex, it is translated and rotated according to the cameigtd Bnd orientation. The
slowest part of the Vertex Shader is the texel fetch from the heightmagexVattributes and shader
variables are packed together into fewer data types to maximize performance

Geometry Shader

The next phase of the pipeline is the Geometry Shader which performs pkttigangle computation.
In the general case, this simply involves testing the triangle against the wistuiin. Failure of this test
results in culling otherwise the triangle is passed to the next stage. Triangiesred within the finest
clipmap level, however, may require further refinement depending orxisierece of high-detail defor-
mation data. In the case of these fine triangles, the Geometry Shader tharhttbisr refinement is nec-
essary and, if so, subdivides it according to a refinement pattermgleson the edge of a tessellated re-
gion needs to merge safely with the coarser mesh in order to avoid T-junatiocls can cause artefacts.
Refinement patterns define exactly how a triangle will be tessellated intoianbtes. Each pattern is
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defined as a set of barycentric coordinates which is a general empation allowing the pattern to be ap-

plied to an arbitrary triangle.
The choice of pattern is based on the states of the
vo s o (essellation-property of all three vertices. Each vertex can

either be set to tessellaté) or not (0). There are thus
23 = 8 possible combinations. Four of these result in no
tessellation - the cases of only one-vertexand zeroon-
vertices The chosen pattern is based on a pattern index
calculated from the tessellation statesf the three vertices
@ AN vo, v1 andvy using the following bitwise expression.

p=to+ (t1 << 1)+ (t2 << 2) (2.2)

This expression produces an integer in the rdfige) p = 7
represents the case when all the sides of the triangle require
tessellation.p = 3,5, 6 represent the cases when only one
side requires tessellation. Finally= 0, 1, 2,4 are the val-

ues resulting in no tessellation. Once tessellated, new ver-
tices can then sample the relevant detail maps and can be
offset in the direction of the heightmap’s normal. The new
composite normal must be calculated using the heightmap
and detail map’s normals. The vertices are transformed by
the view and projection matrices and then sent to the next
stage in the pipeline. Having the different patterns is es-
FIGURE 2.7: The 5 different refinement pat_sential to creating a smooth merging between tessellated
terns for different values gf. The red dots and non-tessellated regions, removing the occurrence of T-
signify vertices set to tessellate. (a) no tegdnctions which would ruin the visual quality. Itis important
sellationp = 0,1,2,4. (b) full tessellation that the mesh triangles be indexed in a consistent fashion
p =T (c)p=06,(d)p=5, (€)p=30ne guych that the refinement patterns. using barycentric coordi-
side tessellated nates, match the indices correctly. The vertices are indexed
in a counter-clockwise winding order to indicate their front-facing directidre first two indices always
describe the diagonal edge. The indexing and different refineméerps can be seen in Figure 2.7.
Figure 2.8 gives an example of a section of mesh that has been tessellated.

(c) (d)

O

(e)

FIGURE 2.8: A tessellated region of the mesh. Red dots indicate vediee® tessellate.
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Fragment Shader

The Fragment Shader is the simplest of the steps in the pipeline. It samplesdireftagment’s colour
and normal from textures. The normal is used in a diffuse lighting calcul&tisnale the colour value.
This is then output to the framebuffer. The two texture fetches in this slaaeléne slowest. The culling
in the Geometry Shader reduces the number of fragments needing to sarspleettiares.

2.5 Summary

This project focuses on the creation of deformable terrain on both a ¢enddine scale. The large-
scale terrain detail is presented using displacement heightmaps to offsstwvef the base mesh. The
base mesh is composed of nested grids of differing levels-of-detail; aiteehknown as Geometry
Clipmaps. Fine deformations are presented by refining or tessellating thenles$ to higher resolution
and displacing the new vertices. Deformations are applied to either theeamars or detail-maps by
two methods. One method uses predefined texture heightmaps called stadipg,thdir values to
the existing heightmap. Another method allows procedural shader progoacnsate a deformation
pattern on-the-fly. All deformation, displacements and tessellations dm@ped on the GPU. In order
to minimise the amount of memory required to store the high detalil, a tile-based teatiniag scheme
is used that pages textures to the hard disk if they are far enough frooathera. This system has
many applications for computer games. Examples include making impressiors snswy terrains,
creating craters from large explosions, simulating erosion or creatirngtygezetracks or footprints.
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Chapter 3

Implementation

The terrain system is designed for the purposes of games with dynamin téitné project is developed
to run on both Windows and Linux systems. It is developed in C++ and maesflOpenGL 3.2 API
with the GLSL 1.5 shading language. SDL 1.3 is used for the windowing syastehfrreelmage is used
for reading and writing PNG images from and to the hard disk.

This chapter covers the implementation of the system in detail. Section 3.1 ¢tmxerseightmaps,
normal maps and the geometry clipmap are created and stored in GPU memadign S&tdetails the
processes of deformation, generation of partial derivative normas mag caching. It also covers the
program flow, handling of collisions with terrain, physics system and tbegss of rendering everything
on screen. Finally, Section 3.4 illustrates three examples of different 6f=gormation stamps.

3.1 Data Storage

Section 2.3 covered the design of data structures used. This section tietailaplementation of
these data structures. Specifically, it covers the texture dimensions anhirftgmats used to store
heightmaps and normal maps and the different VBOs used to store the cligmeyp data.

3.1.1 Heightmaps

Section 2.3.1 introduced the data structures for storing elevation data otbatbe-maps and detail-
maps. These data are stored as textures in VRAM. Representing the elelattioequires a grey-scale
texture image where the intensity of each texel denotes the height or eleattiat location. In terms
of OpenGL textures, each heightmap maps @.aTEXTURE_2D with only a single colour channel,
GL_RED. Heightmaps are commonly 8-bit, providing 256 possible levels of elevationteFains of
decent detail and large height variance, this is not a sufficient lexadafracy. For this reason, textures
with a bit-depth of 16-bits are used, yielding 65536 possible height valihés.is very important as it
allows very high peaks, whilst still providing finer detail on valley floorer Example, if the maximum
height was 5km, a 16-bit range would allow for height deviations of apprately 80mm, whilst an
8-bit range would yield highly aliased deviations of 19.5m. In the case ofl-hetgs, however, 8-bit
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textures are sufficient as detail-maps only represent small deviations surttaee. The range of these
maps is a maximum of 1m, yielding a perfectly acceptable resolution of 4mm.

The choice of dimension of the coarse-map is co-dependent on thedddistance it should span as well
as the desired metre resolution. If a grid of multiple coarse-maps had ingeadrbplemented, the di-
mension of the coarse-maps would have only depended on the deskdioes For simplicity’s sake,
heightmaps are stored using raw texture formats. Coarse-maps Ude tR&6 internal texture format
consisting of&L_UNSI GNED_SHORT data and the detail-maps uSe_R8 andG__UNSI GNED_BYTE
respectively. Because there is only one coarse-map, it must be eddessidally so as to give an im-
pression of an infinite terrain. The texture address-mode (or wrapyistherefore set tGlL_ REPEAT

for both coordinates andt, so that out-of-bound texture accesses wrap to the other side of theetextu
Detail-maps, on the other hand, are organised in a grid formation and stamiwdap. To prevent wrap-
ping, their address-mode is setGh_CLAMP_TO_EDGE which treats out-of-bound texture accesses as
if they queried the closest edge.

Mipmaps are created for the heightmaps, because textures are requivedviipmap-Complete by
OpenGL FBOs which are used during deformation and explained in Secfidn & addition to this the
Heads-Up-Display (HUD) contains a mini-map that uses the coarse-mapeteecause of the small
size of the mini-map, mipmaps improve rendering time (more cache hits) and radatacts caused
by scaling. The caching system pages detail-map textures to the hard disklow for easy cache
viewing, the popular Portable Network Graphics (PNG) image type is usedawiitbit format. The
coarse-map is stored as a 16-bit grey-scale PNG.

3.1.2 Partial Derivative Normal Maps

In order to perform lighting calculations on the terrain, normal vectorgegaired at each elevation
point. In addition to this, when deforming the tessellated coarse terrain withragghution detalil,
normals are needed for the direction of displacement. Traditional normal amegstored with the x, y
and z components of a normal vector in the red, green and blue colounelsaf the texture. A shader
will typically read these in, re-normalize the vector and then use the normalighting calculation.
Unfortunately, this requires three components per normal which is three tiiraesf the heightmaps.
An alternative to traditional normal maps is that of Partial Derivative Norlhaps. These textures
require only two components which reduces both memory usage and textitinddtency. The details
of the usage and theory of partial derivative maps is covered in Secfidh Jhe textures are bound as
GL_TEXTURE_2D OpenGL textures in VRAM with two components of 8-bit accuracy each suah
the internal format and data type @8RG8 andG._UNSI GNED_BYTE respectively. As the with the
corresponding heightmap, coarse-map partial derivative maps agesackttoroidally and thus have a
wrap-mode ofd._ REPEAT whilst that of the detail-maps is set@._CLAMP_TO_EDCGE. Unlike the
heightmaps, the partial derivative maps are not paged to the hard distleadi they are recalculated
each time a heightmap is loaded onto the GPU.

3.1.3 Geometry Clipmap

The representation of the terrain mesh as a set of geometry clipmap leveleweasd in Section 2.3.2.
To avoid confusion with foot deformations, tf@otprintsmentioned in the original paper [AHO5] will
be referred to ablocks Every clipmap level can be made up of four distinct set of vertices. &l ef
these, a VBO is created to store the vertices on the GPU. The first setisemhre vertices that form
degenerate triangles around the inner level. The second contains tiepé-around the inner level.
Thirdly, there are fix-up blocks at the centre of each side of the inner.lde final set is thé/ x M
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FIGURE 3.1: Shows the displaced clipmap rendered in the terrain system

block (footprint), that repeats 12 times in a level. These sets are the samgcfotevel up to a simple
scale and translation and they are thus stored only once. This is the megitbd {SHO5]. The process

of rendering these VBOs is covered in 3.2.4. Storing only &he M block and only one level's worth

of the other patterns, rather than the entire final mesh, saves a cob&dansount of memory. An

additional VBO must be used to store the finest level grid at the centre afekh. Equation 3.1 shows
the calculation of vertex count for a clipmap of with vertices per side.

block fiz—ups L—shape degenerates inner grid
= A~ =
V=M +4xB3xM)+2x(N+1)+4x N—-3+ N? (3.1)

= M?+12M + N?> + 6N — 1

For a clipmap with N = 255 and thus M = 64, the
vertex count comes tol/ = 71418 for an arbitrary num-
ber of levels, which is considerably lower than the almost -
million that there would be for a 5-level clipmap. Each vef
tex in the VBO has two components far and z. No y com-
ponent is needed as this is acquired by the shader when r
ing the heightmap. In addition to this VBO, there is a VB
containing 2-componen®._FLOAT texture coordinates that corre
spond to the vertices. Each of the VBO sets also have an{a
sociated index buffer that is used to specify a triangle strip e
as to make use of the post-transform vertex cache with little pf-
fort. Figure 3.2 illustrates the triangle strip used for the x M
blocks. FIGURE 3.2: lllustrates the in-

dexing of the triangle strip for
M x M blocks withM = 8

A\

3.2 Core Processes

The system be broken up into a number of major sub-systems. Firstly,

the deformation system is responsible for creating modifications in terraiatielevdata and may be
executed in any frame multiple times. The generation of partial derivativaalonaps is also handled
by this deformation system. The caching system is responsible for enslaintiye correct detail-maps
are loaded in VRAM if and only if they are currently, or may soon be, nédalerendering. This system
does processing every frame. The rendering system presents that@tate of the terrain, including
high-detail local to the camera, every frame. Physics and collision deteagitiermaintain the realism
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by performing realistic interaction with the terrain as the camera moves relatitvelioe execution of
these sub-systems is covered in greater detail in the subsections below.

3.2.1 Deformation

The constraints for deformations, as explained in Section 2.4.1, reqdoardgions to occur without
affecting performance. The time between issuing the deformation and nagicegponse needs to be
minimal. In addition to this, the system maintains all deformations for the duratioredadfplication,
or even between executions of the application. This persistence of teragification helps increase
realism in computer games. Because terrain detail is stored in textures) adthia detail to the coarse-
map does not increase memory usage. The same is true for non-zeravagiailAnother requirement
is that the CPU requires feedback from the coarse-map after a defonnatsooccurred, in order to
perform collision detection.

Heightmap deformations are performed using a render-to-texture oper&tionodify the texture. The
deformation system makes use of a single OpenGL FBO to perform defons&iany of the heightmaps.
Results of render-to-texture operations are undefined when readimgahd writing to the same region
of the same texture. For this reason the deformation system maintains two sértheeused as double-
buffers. One of these is used for coarse-map deformations and thefathietail-maps, each set up
with the appropriate internal format and dimensions. This unfortunatelyiresja copy operation to
backup the current state of a heightmap to the double buffer beforerpeny the deformation. Ideally

a backup could be kept for each texture so that the copy step could bedbamitie ping-pong technique
could instead be used.

Initially, the system generates the framebuffer and backup textures #iadizes their formats, and
dimensions. Deformations are performed using stamps which are also seing this initialisation
phase along with their associated shaders. The different types of stampsvered in Section 3.4
accompanied by three examples. A VAO is also created to contain a single &B€senting the quad
that will be used to apply stamps to regions of the heightmap during the remtietture operation. The
deformation process can be divided into three stages.

The first stage involves the double-buffering. First the region of istésecomputed. This is the region
within the detail-map texture to which deformation must be applied. This regiomisatied by scale

and position parameters. The current state of the heightmap in question, thithtcomputed region, is
then copied to the buffer texture so that it may be sampled during the defommatider. The copy is
performed using thgl Copy TexSubl mage2D command. This command requires an FBO to bound
as theGL_READ FRAMEBUFFER with the current source heightmap as the read-target. The same FBO
that will be used for the deformation render is used here. To ensurexthectés mipmap-complete, the
mipmaps are then recomputed usgigGener at eM prap.

The second stage is where the deformation is performed. The FBO is nma b DRAW FRAMEBUFFER.
The heightmap is bound as the draw targeGto COLOR_ATTACHMENTO and the backup texture is
bound to the first texture image unit. The appropriate shader programmistiadled and has its uniform
variables set. For regular stamps this will be the generic stamp shaderpbatipral stamps may opt

for custom shaders. Although procedural stamps have a lot of flexibilhpwthe render, they are still
confined to the region defined by the scale and position parameters. Dneeessary setup for the
render-to-texture operation has completed,gh®&r awAr r ays call is made. This will render a quad
over the chosen region of the heightmap. In the general case it willrpedaclamped additive blend
between the backup and stamp, writing the result into the heightmap.

The final stage consists post-render cleanup operations. Aparuinbinding buffers and textures and
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resetting the viewport, it is important that the mipmaps be regenerated as thée wileded in future

deformations as well as when rendering a mini-map in the HUD. In the case aotrse-map, the
changed region must be copied back into its backup texture in the same wagydione for detail-maps
before the render. This step can be easily avoided if ping-ponging isathsiged. Finally after the
deformation stages have completed, the partial derivative normal map edlltode updated according
to the new height-field. This is also done only within the localised region of motidicarhe generation

of the partial derivative map is a simplified version of the above mentionedssthgt does not require
a backup texture as new normal maps are not based on previous norpsal ma

In the general case this is all that need be done to apply a deformatiohowgver, the region of

modification overlaps a heightmap boundary more computation is requirede katie of the coarse-
map, deforming over a corner requires a deformation to be performetifoes for each of the corners
as the texture is wrapped on both axes as if it represented the surfaderofs. If it it only overlaps

one of the edges, only two deform operations must be made. The normalneeg to be updated for
each of these calls as well. Boundary deformations for detail-maps arentdyrnot handled by the
system. A possible improvement to this implementation of coarse-map boundaryndéibns may be

to use a geometry shader to instance a quad for each operation neaikediay no extra render calls
are required. If this is combined with ping-ponging of the backup buffer,coarse-map would also
require no extra copy commands.

Collision Detection requires the current state of the coarse-map in order for the play&isation
with the terrain to be in accordance with what is visible. For this reason it engakthat the de-
formed map be available to the CPU shortly after the operation has been.isstleglcase where many
deformations are made one after the other in a short period of time, tnangfefter each command
would cause considerable overhead. For this reason, the system avatgdp of approximately 20
milliseconds before it commences the process of streaming the coarse-msmethod assumes that
deformations do not occur anywhere that will affect the player'sezurposition. If this does happen,
the player will momentarily be underground. The CPU can account for g collision heuristics
that have prior knowledge regarding the geometry of the deformatiofpbatbitrary deformations the
system must wait for the streamed data.

The collision detection system uses a floating-point array in system memaprasent the height-field.
It is this array that need be updated with the new heightmap data. The apegtésted by a mutex
so that a separate thread may perform the streaming. The process rsal@@sauPBO to transfer the
coarse-map data. This is done so that the GPU and CPU do not wasteayclastrolling the transfer,
but instead pass this responsibility on to the DMA. The coarse-map datasfemaal, using a dedicated
FBO, into the PBO by the main thread. The main thread then continues with itspregalssing. A
separate thread maps the PBO to a system memory pointergisiWapBuf f er , an operation which
blocks until the data is ready to be mapped. Once mapped, the data is capethé PBO’s memory
into a inactive floating-point array in system memory. A lock is then acquirethe mutex for the
collision array. The pointer to the collision array is swapped with that of thetireaarray containing
the new data. The mutex lock is then released. Because the texture c@taldNSI GNED SHORT
data, it must be converted to floating-point data during the copy. Usintinfippoint textures could
speed this process up.

3.2.2 Generation of Partial Derivative Normal Maps

Section 3.1.2 introduced Partial Derivatives Normal Maps [Act08] adtamative to traditional Normal
Maps. The primary benefit of these maps is that they only require two canpomo store. This
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benefit does come with a cost, however, that the full range of normafsotée reproduced during
the reconstruction phase as is shown in this section. The definition of a Ihstetes that it is the
cross-product of a surface’s tangent and binormal vectors.nGiyaint-vector on a height-field field
h(u,v) the normalN can be derived from the height-field, by calculating the tangenid binormab,
as follows:

r—fuv:uh(uv) v)
“a ()
&5
N=tx _<au’1’_gz>
N = N/|N| (3.2)

Traditional normal maps would store they andz components of. The idea of partial derivatives
normal maps is to only store th¥, /N, and N, /N, components, which are the partial derivatives of
the unit normal. This project uses finite difference equation approximateattial derivatives of the
heightmapg—z aqd%. Specifically a.finite difference equation qf error _orma(rg“) is _used, wheré is
the horizontal distance between height samples. It can be derivedTasitoy expansions.

h(z +€) = h(z) + €0 (2) + Sh () + §1" (2) + O(€*)
h(z =€) = h(z) — €' (z) + Sh" () — §h" (@) + O
h(x + 26) = h(x) + 260’ (z) + 2620 (z) + 85 K" (z) + O(Y)
h(z — 2€) = h(z) — 261 () + 260" (z) — Sf n"(z) + 0(¢")

h(z 4 28) + h(z + &) — h(z — €) — h(x — 26) = 661/ (x) + 330" (z) + O(&°)

Using the above expansions, factomust be found such that thi&(¢3) term is eliminated as in:

(e +26) + ah(z + ) — ah(z — ) bz — 26) = (20 -+ DEW () + =S (2) + O()
20 +16
HI6
== a= -8

After eliminating these terms, the finite difference equation 3.3 is acquired/tajrdj through by—12¢.
This equation yields an error on the order@fc?).

(o) = M H )= £+ Sz = e =20 | g 33

Although this method requires an extra four texture fetches, compared svitd@(£?) error method,
to achieve the smooth and more accurate derivative approximations, ¢hetsesfare in close proximity
and should thus benefit from the texture cache. During renderingh#ttles must reconstruct the normal
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from this map. This commonly done by creating a vecélgf, 1, %) and then normalizing it. This
terrain system also employs this method. It is important to note that this techniquethmitange of
normals to a45° cone around the vertical and thus flat normals cannot be represétisdimitation

is acceptable, as few terrains exhibit very sharp inclines. The ramgbeahanged, at the sacrifice
of quality, by changing the default, = 1 to a lower value. Another benefit of using this technique
is that during implementations of detail algorithms, such as bump-mapping, thatfon of a tangent
space can avoided. Instead, the composite normal can be created byasildiply the two sets of partial
derivatives before normalizing.

3.2.3 Caching

Minimising memory usage is an essential goal of any GPU technique. Betteudeformation system
covers the playing area in detail-map textures, this is difficult. Texture areftiie cached such that
only the necessary textures are kept in VRAM at any point in time. Thisfgeixtures is known as
theWorking Set Section 2.4.2 covers the design of the caching system. This working sseisrined
by the location of the camera within the current tile. There are nine regiongwaittile, formed by a
horizontal and vertical band which cross at the centre. The bandgedssgions of transitions where
adjacenttiles are loaded on both sides of the current tile, but neithectawe & he regions were covered
in more detail in Section 2.4.2 and illustrated in Figure 2.4.

The primary concern regarding caching is the latency experienced tdresierring texture data across
the CPU-GPU bus. The purpose of the band-regions is to ensure tesidwréoaded before they are
required. In addition to the bus latency, copying system memory betweetiolieds slow as well
as hard-disk writes and reads. These factors all contribute to thelldaéeacy experienced between
requesting a texture and it becoming available. A second thread is thetefed to perform the hard-
disk and system memory transfers. The main thread still must coordinate theCBB transfers, as
an OpenGL context is not shared across threads. In order to minimisea@POPU cycles needed to
transfer the data, PBOs are used to invoke the DMA to perform the transfe

An entity termedCacheRequess used to encapsulate the state and detail of a texture tile transfer. A load
or unload request will create@cheRequest struct for the relevant tile and push onto a queue for
processing. Every frame, the caching system checks each of thegaed handles the cache requests
accordingly. Two pools of four PBOs are created initially to be used duhedoading and unloading
processes. In addition to this, a pool of texture IDs is created into whicketbextures can be read. If
there is no data to load for a specific tile, then the tile shares the zero-texiDee’The CacheRequest
struct is shown in Listing 3.1.

LISTING 3.1: Shows the struct used to control load or unload requestslfodetail-maps from the cache.

enum REQUEST TYPE { LOAD UNLQAD };
struct CacheRequest
{
REQUEST TYPE type;
Qui nt pbo;
Qubyt ex ptr;
Til ex tile
bool useZer o;
i nt wai t Gount ;
i nt cycl es;
h
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When a loadCacheRequest is created, the tile is assigned and the type is set. It is then pushed into
ther eadyLoadQueue where it waits for atUNPACK PBO to be assigned to it. Once the main thread
has assigned a PBO to the requestMapBuf f er is called to map the PBO to system memory into
which the image can be loaded. This memory pointer is assigned to the requeastatribute and

the request is pushed onto theadQueue. The helper thread repeatedly checksltib@dQueue for
requests. When a request is popped from the queue, the filename imidetbusing the tile’s row

and column and the image is loaded from the PNG file usindg-tbelmageLibrary. This data is then
copied into the PBO’s memory pointed to per . If the file did not exist, thaiseZer o flag of the
request is set tor ue to instruct the main thread to let this tile share the zero texture. The load teques
is then push onto thdoneLoadQueue. The two queues, load and done, used by both threads, are
protected by mutexes to prevent concurrent access. The cachiegsyisecks theoneLoadQueue

every frame for uploading requests. When it pops a request fromutiigeg it tries to assign a texture

ID from the pool. If this fails, it waits till the next frame for a texture 1D to béegesed by an unload
request. There are enough texture IDs to store a full working set. iDimag a texture ID for the request,
the PBO is unmapped and the data upload commences by issuigt) @ogpy Tex| mage command.

This command should not block and the thread can continue. The PBO iglflack in the pool. The
request remains in the queue, withdtgcl es attribute being incremented each frame to allow for the
upload to complete. Once the cycle count reaches a predefined cotistantipmaps are generated
for the texture usingyl Gener at eM prmap and the partial derivative normal map is calculated. The
texture is then ready for use.

A similar process occurs during an unload operation. The primary differés that the transfer com-
mences before the cache request is passed to the helper thread wikdheritexture to disk. Unload
requests make use BACK PBOs to transfer data to system memory. The main goals in minimising the
latency are to process hard disk and system memory operations asdasséme and to not let the main
thread block.

3.2.4 Rendering

For the purposes of testing the terrain system, the scene is very simplejsiamtire terrain, a skybox
and the mini-map in the HUD. A perspective projection is used witbravertical field-of-view and with
the horizontal field-of-view adjusted according to the aspect ratio. & lmaath library was developed
to handle matrix and vector operations during rendering.

The first mesh to be rendered is the skybox. This consists of a quadraptiee ceiling, and four walls
with a partly cloudy blue sky texture. The sky box does not change podltidmemains with the view

at the centre and rotates around it. The terrain mesh is rendered nexte Bed¢ rendering begins,
frustum culling takes place to choose which blocks of triangles are to bleres. The coarse-map and
its associated normal map are then bound to texture image units. The camtasiis set as the view
transform. No translation is given, because the mesh remains centrectladaiewer. The camera’s
position is passed to the shader, however, and is used to offset theteatudinates so that the height-
field is shifted across the mesh. When high-detail rendering is disablemig$teis rendered by a single
set of shader programs. The render call first renders the inner Ginieh for each layer it renders the
L-shape and fix-up regions. Thd x M blocks are rendered using instancing, and look-up their shift
and scale parameters from a uniform array using theirl nst ancel D as an index. Thé/ x M
blocks are rendered using instancing, and look-up their shift and gaedeeters from a uniform array
using thegl | nst ancel D as an index. The vertex shader performs the displacement of the coarse
map. The geometry shader then does post-transform culling of triangleslyFthe fragment shader
performs lighting calculations. Here the normal is reconstructed from thialpderivative normal map
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as covered in 3.2.2. Using the normal, diffuse lighting is applied according tahproduct of the light

vector and normal. Although a terrain would typically be too rough, a weakisgr is also applied as
a test on performance using the Phong lighting model. The lighting intensity dstaseodulate the

colour read from the terrain colour texture before writing it to the franfelbuf

In the case when high-detail is enabled, tessellation needs to be perfothesd, the VBO for the
inner grid is rendered separately from the outer layers and uses eediffehader. The outer layers
are rendered in the manner as the aforementioned coarse-detailimgnciese. High-detail is only
rendered for the inner grid near the camera. Four detail-maps and tketiaed normal maps are
loaded into texture image units for processing by the shader. The GeonhetrigiSoerforms triangle
refinement according to the patterns discussed in Section 2.4.3. Adaptediation is notimplemented,
however, and the triangles of the inner grid within a certain radius are akltated into nine sub-
triangles. New vertices calculate the tile in which they are located and fetchigplaaement from
the corresponding detail-map. This value is scaled according to detailtheigt then added to the
y-coordinate. The normal must then be constructed from detail-mapsi@gsbnormal map combined
with the base mesh’s normal. Usually this would require tangent-spacersmms but can be easily
computed with the use of partial derivatives. Given the coarse-maplpatigativesV i (u, v) and the
those of the detail-map D(u, v), the composite normal can be acquired using Equation 3.4.

ou Ou’ v Ov
N=N/|N|

(3.4)

This process is equivalent to adding the two heightmaps together and talgdiee resulting normal.
The fragment shader is the same for high-detail and works on these tahmpmrmals.

(a) Full map mini-map (b) Region mini-map

FIGURE 3.3: Shows the two mini-maps used for caching visualisation

After the terrain is rendered, the mini-map is rendered by the caching syStenpurpose of the mini-
map is to give feedback regarding the loaded and active detail-map tiles. Asmaqulered using a quad
in four passes. The first pass draws the colour texture map modulated bgdrse-map. The second
pass fills tiles with translucent colours to represent their current staenGndicates the current tile;
white, loaded and active tiles; red, loaded but inactive. A third passsdtiagvprojection of the view
frustum in a transparent magenta. A final pass overlays grid-lines. Aesmmani-map is rendered below
illustrating the camera’s region within a tile. These maps help to visualise whaathéng system is
doing.

3.2.5 Collision Detection and Physics

The camera is governed by simple Newtonian physics. Every frame, yagrciontributes to the forces
acting on the camera. During the logic step these forces are integratethewane-step using Euler-
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integration and are added to the velocity of the camera. This velocity is in tuigréanéel over time to
update the camera’s position. In addition to user-applied forces, th@ameant imposes a gravitational
force, which can be toggled off and on. When in motion, frictional formesapplied to the camera.
These frictional forces are proportional in magnitude to the velocity bposite in direction.

After the position has been updated, the horizontal location is used to Idl&umight of the terrain at
that point. If the vertical position of the camera is below this value, the cameftses to the height of
the terrain. This height-field array must be updated each time a deformatiarsod he streaming of
elevation data, for collision, is discussed in Section 3.2.1. This collision negpmethod does not alter
velocity in any way.

LISTING 3.2: Bilinear interpolation of the surrounding heights

int X0 =int(p.x);
int z0=int(p.2);
float fx = p.x - x0;
float fz = p.z - z0;

/1 wrap out-of-bounds i ndexi ng
int x1 =x0<N-1?2x0+1: 0
int z1 =z0<N-1?2z0+1: O

[/ interpolate in X

float top = (1-fx) * h[x0O + N=* (z0)
+( fx) = h[x1 + N=* (z0)

float bot = (1-fx) » h[x0O + N= (z1)
+( fx) » h[x1 + N=* (z1)

/] result frominterpolationin Z
float height = (1-fz) » top + fz = bot + EYE HH GHT;

Listing 3.2 shows the bilinear interpolation of height values used to calculagértdreight at a given
andz. N represents the dimensions of the elevation data d@reaydp is the camera’s position.

3.3 System Parameters

This section covers the choice of parameters used during the develophitbgrtterrain system. The
scale is chosen with 1 unit to be equivalent to 1 metre. The quads of the fime= grid, level of the
clipmap are placed 0.1m apart. Each clipmap levelfas 255 vertices along its side with the resulting

M = 64. The clipmap hap = 5 levels apart from the inner grid. The coarse-map textures are set to
4096 x 4096 which in combination with the clipmap®.1m granularity, spand09.6m. Tessellation is
performed at a factor of, yielding 9 sub-triangles for every triangle and a detail granularit).68m.
Detail-maps have dimensioR848 x 2048. The caching system thus mag36 x 3/2048 = 6 detail

tiles, in one dimension, on top of the coarse-map, according to Equation 2.1.

This choice of parameters is not necessarily the best, but producasatigfresults. In the case of a
game, the values would be tailored to the needs of the game system. Some afathetpes would
be based on the user’s chosen settings. For examptee number of clipmap levels, determines the
viewing distance and could therefore be increased if the computer hatigatéormance.
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3.4 Example Stamps

The deformation system uses the paradigmistampgo perform modification to heightmap data. Stamps
apply a pattern to the heightmap. There are two main types of stamps. The &irgeigeric texture
stamp which takes a small grey-scale image and adds it on top of the tardatingig The intensity of
impression made by any stamp, texture or other, can be controlled. Sgbgiffearotation, position,
scale and intensity can all be controlled by parameters passed to the dedareystem. Due to the
design of the deformation system, a second type of stamp may be creatadsBstamps may specify
an alternative shader program to that of the generic texture stamp shaasgdural stamps may be
created. The impression of such stamps is determined on-the-fly by theadsdshader. This allows
the impression to be determined by variables such as time or position. A giweadural stamp could
thus produce a different result every execution. This allows for mudibility. Three examples are
given to illustrate the possibilities of different stamps.

3.4.1 Footprint

The first example illustrates the use of a generic texture stamp. A greyRd@aemage of a footprint
is stored on the hard disk. A stamp entity is registered with the deformation sy$tesrregistration
involves the mapping of a unigue identification string, suchfagot pri nt ", to a struct containing
the stamp image path on disk. Other attributes of the struct are requirecofmdoral stamps. Once
registered with the deformation system, a deformation using this stamp can kedripsimply passing
the unique identification string to the deformation systedi'spl ace_hei ght map function. The
texture image of the stamp is added to the specified location at the specifiedsdaletation. The
application provides a toggle for automatic footprints, generated as theaamges across the terrain.

(a) Footprint detail (b) The footprint stamp

FIGURE 3.4: Shows the footprint stamp and the result it has on detail éndpplication

3.4.2 Gaussian

The second example is that of shader-based, procedural stamp.x&hiple is not complicated and
does not exploit all possibilities of procedural stamps, but demonstragegrtitess nonetheless. A
Gaussian surface has a bell shape and as a grey-scale texturasagpeircle with soft edges. The
most basic Gaussian at locatipn= (z, y) can be defined by Equation 3.5.

f(x) = aexp(—B|p-x[?) (3.5)

where« controls the intensity; controls the rate of falloff and is an arbitrary location at which the
Gaussian is computed. Section 3.2.1 stated that the region of deformationregsedless of the type
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of texture. This imposes a constraint on the size of the Gaussian. If thenpters are not chosen
carefully, the Gaussian would be truncated at the edges of the regmrediral stamps have a callback
function allowing them to perform any pre-deform setup that may be regjuirthe Gaussian shader has
a uniform variable to control the falloff. Using the given scale of the deform region, the falloff can be
calculated such that the Gaussian value is near zero at the edge ofdha de¢a. Given Equation 3.5
for the Gaussian, a very small heighto#t the edger, wherez is half the dimension of the deform
region, is imposed:

aexp(—f2?) < ¢

€
—Bz? <ln‘—
o

In £
B> ——="

2

f3 can thus be set t6 = — In £ /z? to ensure an intensity efat the boundary of the region. This falloff
value is passed to the stamp’s shader and the deformation takes place.

3.4.3 Shockwave

The final example demonstrates how a dynamic texture can be used as a Bhasnip.made possible

by render-to-texture operations using FBOs. The terrain system pogidheans to creates shockwave

that travels along the terrain surface, deforming the coarse-map. fasepkass handles the state of the

shockwave. The wave’s texture is initialised to a narrow gaussian. The B@uation (Equation 3.6) is

used to update the state of the shockwave in an update shader, sepanateefdeformation system.
0%u

The shader uses a finite difference approach to integrating the abaagoggshown in Equation 3.7.
g1 (, 2) = 2ug(x, 2) — w1 (x, 2) + Y(ue(z — L, y), u(x 4+ 1, y), ue(z,y + 1), ue(z,y — 1)) (3.7)

In the above equations, denotes the wave’s vertical displacement from zero ;(the) parameters
indicate the location in the horizontal plane ; and the: subscripts denote the indicated step in time,
wheret + 0 is the current time-step. The parametgris a combination of wave speed, time-step and
mesh-spacing. It has a maximum value)df to ensure unconditional stability. It is set@d to yield
maximum travelling speed. This update is applied a number of times per framestaidpe wave and

is then used as a stamp in a deform operation.

3.5 Summary

A fully functional application has been implemented as a deformable terraiensyJerrain elevation

data is stored as OpenGL textures in GPU memory. Terrain data is stored invel® dé detail. The

major terrain geometry is stored in a 16bit greyscale textures termed the-coaps while surface detail
is stored in 8bit greyscale textures termed detail-maps that span the fuilh teratile-based pattern.
Coarse-map data is accessed toroidally using2heREPEAT wrap-mode to give an effect of infinite
terrain. Each heightmap texture has an associated normal map texture. Tleiméniation makes use
of partial derivative normal maps which only require two components te sh@ir data at the small cost
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of limited range. These maps are storedsas RG3 textures in VRAM and are never paged to the hard
disk, but rather created each time their associated heightmap is loaded.

Due to the high resolution of detail-maps and value of GPU memory, inactivé-oetps are cached
according to the camera’s location within the current tile. The caching gsase¢hreaded, and invokes
the DMA to perform the GPU-CPU transfer. Hard disk operations occtinenseparate thread. The
state of the caching system is realised by rendering a mini-map as a ovetlas @Bwport.

Deformations are performed primarily by user input. The process invobreger-to-texture operations
via OpenGL FBO operations. Only the regions in interest are re-rettiereaximise performance. De-
formations are usually followed by regeneration of the associated nornmaimtlat region. Textures,

termedstampsare used to apply specific patterns during a deformation. Stamps may alsnée g
ated procedurally using custom shaders. The implementation provides &nahdifferent stamps to

demonstrate their purpose and use. The state of the terrain is preseuisdlaging vertices of a mesh
which is rendered to the viewport. This mesh is formed using the concemeairaetry clipmap and is

stored in VRAM as a set of VBOs.
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Chapter 4

Results

Chapter 2 specified the design constraints for the terrain system. Thendgstgets modern computer
games and the most important constraint is therefore for the system to reittaim neal-time frame-
rates. The target frame-rate was chosen as 60 frames-per-se@lsvttor other game sub-systems to
occupy the remaining frame-time. For this reason most of the tests in this chaptgse the time taken
for certain processes to execute. The tests listed below were perfomtamd aystems with different
Shader Model 4.0 GPUs. The lower-end system contains an NVIDIAofe@eP600GT and the other
system houses the GeForce GTX295. This is done in order to analysmathbibty of the terrain system
and identify the range of graphics cards it supports.

The terrain system is setup with default parameters, unless otherwise atggebcified in Section 3.3.
The first few tests are performed using only coarse-detail rendenicghe final two tests analyse the
two different approaches to representing high-detail on the terrain.

Test1l analyses the maximum render time of the terrain system, rendering only tise-gnap with no
high-detail. The results of five test runs and the averages are shovabl@ 4.1. Both frame-rates and
the time taken to perform a render are recorded. Frame-rates aredffgoother processing performed
during a frame’s execution whereas render-time gives a measurenreht ptithe time taken for the
graphics card to render the scene.

Run # Time (Ms) Frame-Rate (FPS)
9600GT GTX295 9600GT GTX295

8.725 1.815 95.71 508.07
8.730 1.813 95.73 508.70
8.829 1.813 92.22 508.91
8.799 1.814 93.14 508.98
8.649 1.813 96.00 508.12

Avg 8.746 1.814 94.56 508.76
Speedup 4.8x 5.4x

a b wN PRk

TABLE 4.1: Shows the render-time and frame-rate results of 5 testsdtir target systems as well as the perfor-
mance increase from the lower end to higher end machine.
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The Speedupow indicates the factor by which the higher-end machine outperforms trerdemd ma-
chine on the test. The frame-rate results of 94 FPS and 508 FPS for thre towlehigher-end machine
respectively are well above the target frame-rate of 60FPS. Théntaystem is thus sufficiently fast
when rendering coarse-detail.

Test 2 analyses the dependence of the frame-rate on the size of the viewpattis;Thow fast does
the frame-rate decrease when the viewport size is increased. Tablsplad/d the results of the test for
five different resolutions. The default resolutidiz4 x 768, is highlighted and used as the reference
result. TheReference Factorolumn represents a comparative factor of each row with the referewce r
ie. 640 x 480 performsl.3x as fast as the reference row. TBpeedugolumn is the same as it was for
Test 1, representing the factor by which the higher-end machine ootperthe lower-end machine.

Dimension 9600GT GTX295 Speedup
Frame-Rate (FPS) Ref. Factor Frame-Rate (FPS) Ref. Factor

640x 480 125.76 1.3x 554.57 1.1x 4.4x

800x 600 111.41 1.2x 536.60 1.1x 4.8x

1024x 768 94.56 1.0x 508.87 1.0x 5.4x

1440x 900 75.39 0.8x 438.38 0.9x 5.8x

1920x1080 53.83 0.6x 371.66 0.7x 6.9x

TABLE 4.2: Shows the effect of viewport dimension on the frame-i#1 x 768 is the reference size that other
data are compared with. The speedup column represents ha faster the higher-end card would handle the
given resolution.

Frame—Rate vs Viewport Size
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FIGURE 4.1: lllustrates the dependence of frame-rate on viewport Sike.green dotted line indicates the target
lower-bound of 60fps.

The results are represented graphically in Figure 4.1. When loweringgb&ution from the default, the
lower-end machine yields a greater improvement factor than the highewsod most likely indicates
that the higher-end machine is processing fragments at near peaknpenfee and does not experi-
ence any bottle-neck in the fragment shader. It is interesting to note thaaihe is not true for the
9600GT which experiences a né@’ drop from 125 FPS to 54 FPS, compared to3B#& drop of the
GTX295. Improvements and optimizations in the fragment processing stagd thoais benefit lower-
end machines and should be considered in future iterations of this systerpeffbrmance at Full-HD
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(1920 x 1080) resolution is still real-time and only just drops below the requirement of &8 fBPthe
9600GT as is shown in the graph. It is important to note that it is not the drispnme-rate that is im-
portant, but the rather the size of the drop relative to the frame-rate itselfparcentage. This is due to
the fact that frame-rate has an exponential relationship (Equation 4 dnden-time. Thus a drop from
500 FPS to 400 FPS only represents an increase in render-time of 0.5ma&rfre to2.5ms, whereas a
drop from 100 FPS to 90 FPS represents a render-time incredasintg from 10ms td 1.1ms.
FPS=17""

(T in seconds) (4.2)

Test 3 considers the time taken to perform deformations to the coarse-map. Déforsto the
detail-maps are not tested as they will yield the same results or faster. lddh®ue-iterated that
performance does not decrease as more deformations are perfaretreh extra data being created -
deformations modify existing data. The tests shown in Table 4.3 represdrdiie rate results acquired
when increasing the size of the region of deformation. The units of the diomeage given in metres
in order to give a practical idea of size. The coarse-map has a resobitioim per texel and the
equivalent texture dimension is 10 times the size in metres. The 200m deforiigatiois2000 x 2000
texels. TheDeformcolumn indicates the time taken for the deformation.

Scale (m) 9600GT GTX295
Deform Normal Gen Factor Deform Normal Gen Factor
10 6.856 6.195 - 0.899 0.792 -
20 7.027 6.776 0.95 0.913 0.800 0.99
50 7.338 6.898 0.97 0.971 0.828 0.95
100 7.519 7.010 0.98 1.192 0.953 0.84
200 13.15 9.387 0.64 1.875 1.329 0.67
Net Decrease 6.294 3.192 0.58 0.976 0.537 0.53

TABLE 4.3: Results of deforming regions of different area. The Scdlaeo gives the dimension of the deformed
region, thus representing an area 8tale x Scale.

Time vs Deformation Dimension
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—#— Deform 9600 i
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Dimension (m)

FIGURE 4.2: Shows the dependence of deformation and normal-genertti@non the size of the region being
deformed.
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The Normal Gencolumn indicates the time taken to generate the corresponding normals-acdtoe
column gives an indication of the percentage decrease in performamueltie above row. Eg. The
200m deformation has 64 performance relative to the 100m deformation, or the 100m deformation
takes 64; of the time taken by the 200m deformation. TKet Decreaseow gives total difference in
time between the largest and smallest deformation. Figure 4.2 illustrates this graphically. The
higher-end GPU manages all the deformations with very small performangsisbut the performance
of the 9600GT, which is already considerably slower, deterioratetichtg for the 200m deformation.
Although such deformations should not be common, except for exampiesasuheShockwavestamp
mentioned in Section 3.4, itis important to note this limit. The difference between th&iigenerating
normals and that of the deformation gives insight to the time spent copying eoldedbuffer. This
increases approximately frofb5ms to 4ms for the 9600GT when changing from the 100m to the 200m
deformation. Eliminating the need for this copy operation would fix this suddeease. The effect

of copying may be greater than the estimated amounts however, as the nenadtgpn requires three
additional texture fetches, although the texture cache should hide thigleftvenation process should
be faster than it is on the 9600GT as such computations have been fouodhpoite in much faster
times [AHO5].

Test 4 analyses the effect of changing the number of clipmap levels from a sma# @ 3 to a
large number 11. Note that the default is 5. Increasing the number of clifgwals is one method of
increasing the viewing distance. With default resolution 0.1m &ng 255, the viewing distances for
3, 7 and 11 -level clipmaps are 100m, 1.6km and 26km respectively.

Clipmap Levels 9600GT GTX295
Frame-Rate Factor Frame-Rate Factor

3 112.25 - 656.26 -

4 95.17 0.87 574.07 0.87
7 80.52 0.85 411.59 0.71
9 70.22 0.87 346.23 0.84
11 63.07 0.90 298.09 0.86

Net Decrease 49.18 0.56 358.17 0.45

TABLE 4.4: Shows the effect an increase in clipmap levels has on fratge-r

These results do not infer too much technical detail about performantegjve an idea as to what a
lower-end and higher-end machine can handle. A lower-end machinédghmbably not go above
clipmap levels whereas a higher-end machine could hanigieels.

Test 5 concerns the streaming of recently deformed terrain data to the CPU fdn gsdision de-
tection. This is a difficult process to time as the transfer are performeciagymously by the DMA.

The timing was calculated as follows. The timer was started as the transfer comwvaarnssued and
stopped immediately after the terrain data had been copied into the collision @&ragcond timer
measured the time taken to copy the data from the PBO’s system memory arraycallision array,
Sysmem Copylhe bus transfer tim&us Copywas computed as the difference. The results show that
the majority of the time is spent copying between system memory arrays. It istenpto remember
that the copy process is not a simplentpy but also requires scaling, because the raw texture data
consists ofunsi gned short elements and the collision array requires the actual heights as floats.
This clearly slows the process down. An alternative method should b&leoed. Possibilities include:
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using a floating-point texturédL_R32F) instead ofG._R16 or storing the collision array as unsigned
shorts and only scaling when interpolating heights during collision testing.

Run# Total (ms) Sysmem Copy (ms) Bus Copy (ms)

1 58.8 49.1 9.9
2 56.5 47.2 9.3
3 56.0 46.5 9.5
4 64.5 54.8 9.7
5 66.8 57.3 9.6

Avg. 60.5 51.0 9.6

TABLE 4.5: Shows the time taken to stream the terrain data to system miemo

Although the system memory copy is the obvious bottleneck, it may be possibkctease the bus
transfer time. Currently, after initiating the transfer, the algorithm waits anesinéime before mapping
the PBO to system memory. The maximum memory bandwidth of a GTX295 [NVId]1s91GB/s,
which would transfer the coarse-map in 0.3ms. This does not accoumigdatency, however. Moving
the process of mapping the PBO to the beginning of the frame may consumel wiaste A final,
obvious optimisation would be to only transfer the modified region of the caaege It is important to
minimise this time as best possible so that the physical effects of deformat@reatised immediately.

Test 6 The timing of the caching process is very difficult to measure due to buddrarseing asyn-
chronous. It is not possible to tell when a texture has finished uploaditigetGPU, for example, as
this is controlled by the PBO and DMA. The time taken to unload a texture, howieveeasurable
to an extent. In order to measure the unload process, the results of whish@vn in Table 4.6, a
timer is started as an unload request is issued. The timer is stopped - andoeddiene, recorded -
when the data has been written to disk successfully. A second timer metsaiczsnbined time taken
when copying from the PBO to system memory and writing this data to disk. Tdtdifirer’s results
are shown in the second column of Table 4.6 and those of the second times,thirthcolumn. The
difference in times is computed as the final column and labBlezi Copy A final note is that these
measurements were recorded for the GTX295 and are therefore thealsesresults. The hard-drive
used was a 7200RPM, and memory was 1066MHz.

Run# Total (ms) Sysmem and Hdd (ms) Bus Copy (ms)

1 159.1 134.1 25.0
2 168.1 148.1 20.0
3 156.2 127.2 29.0
4 162.1 135.6 26.5
5 158.0 125.0 23.0
Avg. 160.7 134.0 24.7

TABLE 4.6: Shows the duration of time required to page detail-mapssk di

Although the final column values do contain the time taken to copy across thinbyslso contain time
wasted waiting in queues and waiting for PBOs from the pool. It was showlmeiprevious test that
transferring the coarse-map datad6p6 x 4096 x 2 bytes takes under 9ms. A transfer20f8 x 2048

bytes should therefore take even less time. The measured values cleadydriiat too much time is
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wasted waiting in queues and waiting for available PBOs. In order to minimiseattreng times, this

process will need to be reorganised and optimised so that less time is wast@dm&nse time is spent
copying system memory and writing to disk, as shown by the third column. Littldbeastone about

disk access speeds, but this is not as much a problem with unloading ashewiith the loading of

data. Omitting the memory copy step would mean that the PBO is locked to a cadlestriay a longer

period of time, but would cut down on the total unload time. This possibility shioalthvestigated.

Run# Sysmem and Hdd (ms) Est. Bus Copy (ms) Projected Total (ms)

1 23.5 25.0 48.8
2 20.3 20.0 40.3
3 18.9 29.0 47.9
4 25.3 26.5 51.8
5 23.9 23.0 46.9
Avg. 22.4 24.7 47.1

TABLE 4.7: Estimates the time it would take to load a detail-map fronk @iso GPU memory. Only the second
column was measured during the load process. The third aoisrtaken from the cache unload table, and the
final column is the sum of the two.

In order to estimate the time taken by the caching system to load a texture, thepyutinee is taken
verbatim from the unloading measurements. Assuming that the same time is wagtetdi@s, waiting
on PBOs as well as waiting on available texture 1Ds, the “bus copy time” musttheed considerably
for load requests as well. Load requests are more important than untpeekste as the textures need to
be loaded as quickly as possible so as not to cause visual artefactsialf gaunloaded textures. The
projected total suggests that a load will take 3 or 4 frames to complete at 60 RB®nay be sufficient,
but only applies for the high-end machine. These times need to be improteak $mver-end machines
can achieve decent caching times. Here, the omission of the system memypnyit@reatly improve
the times.

Test 7 The final test involves the rendering of detail-maps. This report cdvbeedesign and imple-

mentation of a tessellation method to represent the surface detail. An altetieatimique was designed
in parallel to this technique. The other technique made use of parallax mappiegresent the detail.

The two methods have been measured and are compared in the following e fEdble 4.8 lists the

results of the tessellation technique. The columns are the same as they wEestfb. The tests were
performed with default parameters.

Run # Time (Ms) Frame-Rate (FPS)
9600GT GTX295 9600GT GTX295

131.291 9.831 7.39 99.73
129.329  9.842 7.60 99.65
129.561  9.812 7.57 100.02
131.479  9.822 7.46 99.75
130.211  9.809 7.53 99.99

Avg 130.374  9.823 7.51 99.83
Speedup 13.3x 13.3x

g b WN P

TABLE 4.8: Shows the results of representing high-detail by furtheshrtessellation.
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Results indicate a large amount of computation is required to perform this metherd compared to
the results of Test 1 which had no detail rendering. The high-end mabbmdropped from a frame-
rate of 508 FPS to 100 FPS and low-end from 95 FPS to 7 FPS. Althoughgineihd machine still
runs in real-time, the low-end machine’s frame-rate is far below accepfabtetessellation technique
does produce better visual results, with steeper detail and propesimechut these are not worth the
extra computation required. These results are below the design targeds awod meet the constraint
for real-time frame-rates. The implementation needs to be reworked or, ifmificant improvement is
possible, should be abandoned.

The results of the alternative method for representing high-detail, thatrafigx mapping, are shown in
Table 4.9. These results are far more pleasing. The render-time for thehigmachine only increase
by 0.5ms from the no-detail rendering test and, although it doubles, remaar the constraint of real-
time frame-rates for the low-end machine. The parallax shader has mobpamised fully and the 58
FPS should be easily increased. Achieving the target frame-rate fortherid machine is a success
for the representation of high-detail.

The second technique is the obvious choice as a method for representmgfiice detail of deformable
terrain. If the first technique could be improved significantly it could befiooal alternative, however.
For instance, a game could have a settingTerrain Detail with three options ohone parallax or
tessellatedvhere owners of high-end computers could opt for the tessellation teehaitd enjoy the
greater visual quality.

Run # Time (ms) Frame-Rate (FPS)
9600GT GTX295 9600GT GTX295

14.772 2.331 60.01 401.83
15.300 2.330 58.19 401.91
15.136 2.329 58.83 402.18
15.329 2.327 58.01 403.20
15.414 2.338 57.52 401.15

Avg 15.190 2.331 58.51 402.05
Speedup 13.3x 13.3x

ga s wWN Pk

TABLE 4.9: Shows the results of representing high-detail through geaf parallax mapping.

In summary, most of the results have met the requirements of real-time fraese-rfwo methods
for representing surface detail of terrains have been evaluatedofQhese, the tessellation approach
covered in this report, did not pass the frame-rate requirement. Thetetferique was successful.
Although the timings were sufficient, many of them do require improvement asewsphasised by
the results of the 9600GT. For example, caching and the streaming of cotligiarcan be improved.
Streaming of collision data will gain a significant speed increase when onindiakfied sub-region is
copied, rather than the entire terrain and caching will benefit if the copfisgstem memory can be
avoided. Deformation times can be decreased by removing the need jangop the double-buffer, if
possible. As a coarse-scale deformable terrain system, it is succasdfulith some optimisation and
improvements the high-detail representation should be possible.
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Chapter 5

Conclusion

The purpose of this project was to investigate, design and implement a foaknéw real-time, de-
formable terrain to be used in modern computer games. In order to incresse T and maintain a
user’s attention, interaction with the game environment is a primary focusn\Weeuser performs an
action, he/she expects a reaction. Most games do not provide any matgréeiwith terrain, however.
The addition deformable terrain system to game engines solves this probieatddmore depth to a
player's experience. Such a system provides a user with immediate vesdddck and gives them a
greater sense of freedom. As well as increasing a player's sensesgnge, it may also add dynam-
ics where player’s can dig their own trenches or burrow under anregye wall. An additional aim
for this project was for all deformations to persist for the duration of p@ieation’s lifetime. Many
games apply details such as bullet-hole decals that last for a limited amount ofetiare fading away.
This can detract from a game’s realism as well. Constraints for the systhumddéa real-time minimum
frame-rates of 60 FPS and high visual quality. The target architectutbdderrain system was to be
Shader Model 4.0 GPUs such as the NVIDIA GeForce 9x and 200 setids.

The terrain system proposed in this report uses two state-of-the-artiqees. These are Geometry
Clipmaps [LHO4] and Displacement Mapping [Coo084]. Geometry clipmapsised to represent the
underlying geometry mesh of the terrain whilst displacement maps store ttad algtvation data of
the terrain. A flat mesh is submitted to the graphics pipeline for renderingvditex shaders use the
terrain’s displacement map to offset vertices. The clipmap is centred oattera and the displacement
map is translated over the mesh in the shader to give the illusion of motion. Amkgfon subsystem
exists that allows modification of regions of the displacement map using textugestermedtamps
Stamps, like the displacement map itself, are grey-scale images and are simtly add possibly
scaled, to the displacement map in the specified region. The intensity of the stayjnpe varied
as well as its rotation and size. In addition to predefined stamps, the defanmsgtitem provides the
application with the ability to create procedural stamps. Procedural stawg@sbactual texture image,
but generate the stamp pattern on-the-fly using custom shaders. Teeingmprocess includes per-pixel
lighting calculations using ambient, diffuse and Phong specular equations.

The deformable terrain system allows two levels of detail for deformation tanmef the coarse-map
which is a large-scale displacement map describing the macro-geometnierfrdie, and a set of detail-
maps which are laid out across the terrain and describe surface detadssmall bumps, footprints or
bullet-holes. The representation of surface detail is done by furtheltasng the inner grid and then
displacing using the detail-maps. Triangles are tessellated into nine unifbrniangles in the geom-
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etry shader. Deformations to the coarse-map are taken into account tyiliemn system. A caching
system pages detail-maps to and from the hard disk as needed by the tappli¢sl deformations
persist throughout the lifetime of the application and even between exegution

The results for the rendering of the coarse-map without surface deded far above real-time. On a
high-end system with an NVIDIA GeForce GTX295, the achieved fraatesraveraged around 508 FPS
and the lower-end 9600GT system averaged with 95 FPS. Averagkdafmmations of 50 metres took
approximately 2ms on the high-end system and 14ms on the low-end machislsib important to
note that subsequent deformations do not cause any extra perfemgnduring the rendering process
as no extra data is added - deformations modify existing terrain. Thesergracceptable results. As a
coarse-scale deformable terrain system, the frame-rate constraintfiegatigficiently. Due to the fact
that all the technigues used - geometry clipmaps, displacement mapping, $lengar lighting - are
state-of-the-art, the visual appearance is of a sufficient standaatistyghe second constraint.

The results regarding high-detail rendering are not as succesdiel.gdometry tessellation is an ex-
pensive process and the geometry shader is known to yield a perfarmarticat is linearly dependent
on the number of output attributes. Although the high-end machine prodarcederage frame-rate
of 100 FPS, the low-end machine only managed 7 FPS. The high-detail tb@ukfore not satisfy the

frame-rate constraint. An alternative technique was implemented by a ppajgoer, one that made
use of parallax mapping. This alternative technique yielded frame-ratestoiinder 60 FPS on the

low-end machine and over 400 FPS on the high-end machine. Although thisdae does not produce
as realistic visuals, it satisfies both constraints.

In conclusion, it was possible to successfully create a coarse-sdalendble terrain framework that
satisfies the original design constraints. The addition of a surface depadsentation using triangle
tessellation was, however, not successful.

5.1 Future Improvements

There is much room for improvement in the design and implementation of the teystem. These in-

clude both performance and visual aspects. The most important improve:megid be that of adaptive
tessellation as proposed in the Design chapter. Only regions containinigndmtkl be tessellated, re-
ducing the number triangles being output from the Geometry Shader franiswturrently output. This

would, of course, not improve the performance of the worst-caseagoerwhere the entire inner grid
requires tessellation. Better design and optimisation of the Geometry Shadttatsw yield significant

improvements. Each tessellated vertex currently performs an additionalxttuoetdetches, to acquire
the detail height and normal. This may be reduced to a single read by storimgls in the same texture
as the detail elevation data. Using some sort of non-linear interpolatidmasuéhong Tessellation, for
the tessellated vertices would give the effect of smoother terrain nearetivervand could be used to
smooth contours on the horizon as in [BA08]. Future iterations of this sysktemld support multiple

coarse-maps to enable larger game worlds and environments.

Render time may also be improved by ordering grid vertices in triangle lists tipbiexhe post-
transform vertex-cache better than raw triangle strips [Cas]. In termseafiory usage, texture size
may be reduced through the use of OpenGL’'s compressed texture forltriads been shown [AHO5]
that geometry clipmaps support the presentation of massive elevation tathateare decompressed
and streamed. Whether it is possible to modify and re-compress this datatis r@searching as it
would yield the possibility of near-infinite coarse-level deformable terraic®mputer games.

In its current state the terrain system maps detail textures and colour teiiutee mesh in the same
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manner as it does the coarse-map. When very steep inclines or declinesvearping artefacts may be
seen as the texels are stretched between vertices due to the fact thasvemtionly spaced regularly
on the horizontal plane. The size and aspect ratio of quads in the meshffeagatly, especially in
areas of large gradient. It may be beneficial to investigate other mapgitgsgure coordinates to the
mesh, or to rather account for such artefacts in the Geometry Shadddimgar moving vertices.

When deformations are performed, the stamps are applied with uniform intémsity heightmap. In
the case when a footprint is applied to a sharp, but narrow, peak, thilklwwause an impression on
the peak as well as down the slopes. The correct result would be to mqosiyof the impression to
the first point of contact - the tip of the peak. For this to occur, intensityldvoaed some dependence
on the current state of the heightmap, but would certainly yield more realistidtse A related addi-
tion would be to the support of deformations at arbitrary orientations. e@tlyrall deformations are
performed parallel to the vertical. Arbitrary orientation would require egtmaputation to project the
texture coordinates onto the given plane and even further computation-iimform intensity were to
be supported.
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Glossary

Cache

A component or system that transparenttlé
stores data in order for future requests to
served faster.

Coarse-map

A heightmap texture used in this project to
describe the low-frequency (slow-changing)
elevation of the data for the terrain. These
maps represent a large area of terrain.

Detail-map

DMA

FIFO

Framebuffer

Pixel

A heightmap texture used in this project for
specifying high resolution elevation data for
the terrain. These elevation data will de-
scribe how tessellated triangles should be
displaced from the coarse-map.

Direct Memory Access. A feature of micro-
processors allowing hardware subsystems to
access system memory independently of the
CPU.

First In, First Out. The organisation of datyBO

in a data structure such as a queue. The
first element to enter the queue, is the first
to leave. The last to enter the queue, is the
last to leave it.

Texel

display a colour on a computer screen.

Single Instruction Multiple Data. This is a
class of parallel architectures whereby each
processor executes the same instruction, but
does so on a different data element. Modern
GPUs are of SIMD architecture.

Texture Element. Similar to a pixel, except
that it is the smallest component of given
texture image. The width and height dimen-
sions of a texture are equal to the number of
horizontal and vertical texels respectively.

T-junction

A location in a mesh where one edge ends in
the middle of another edge such that the ver-
tex sits in the middle of an edge resulting in
a T-shape. These can cause visual artefacts
when the lone vertex’s height differs from
that of the edge.

Vertex Buffer Object. An OpenGL resource
mapping to an allocated section of GPU
memory used for storing vertex data or ver-
tex attributes.

Vertex

The video output device that passes the data A corner of a polygon where two edges

representing a complete frame to the video
display.

Picture Element. The basic element used to
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meet. Three vertices describe a triangle.

VRAM

Video Random Access Memory. This is the
memory on the graphics card.
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